
 

 

Exclusive Technology Feature 

 

 © 2011 How2Power. All rights reserved. Page 1 of 5 

ISSUE: October 2011 

Current-Loop Control In Switching Converters 

Part 2: A Waveform-Based Model 
by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

In part 2 of this article series on current-loop control, we continue to lay the groundwork for the development of 
a waveform-based model by deriving time-domain expressions for inductor current that describe the closed-
loop converter behavior without introduction of slope compensation into the PWM block. We then derive the 
equations relating inductor current slopes to converter parameters under steady-state operation. These slope 
equations allow us to analyze the effect of small changes that occur from cycle to cycle and are of interest in 
incremental (small-signal) and linear analysis.  

The Waveform Equations 

Waveform-based models of the current-loop converter begin with the time-domain waveforms of inductor 
current, iL, and the peak- or valley-current-commanding input quantity, iI, as shown in Fig. 1. 

 

Fig. 1. Inductor current waveforms for a power converter operating under peak current control. 

 

The total duty ratio (or duty cycle),  δ = D + d, is the sum of the steady-state or quasi-static D and incremental 
d for which d = dδ (the derivative, not the product of d⋅δ) and where the total current slopes are defined as 
mX = Mx + mx. A perturbation at the peak of iL of cycle k will propagate to cycle (k + 1) and affect d(k + 1), not 
d(k). The step change of il (k) remains constant relative to the steady-state value of iL(t) until the end of the 
on-time of the next cycle, then begins or ends ramping with slope ±mU for the difference that is il of that cycle. 

We begin with the waveform equations for the inductor current, iL(t), and duty ratio, δ, using the notational 
shorthand that x(k⋅Ts) = x(k) and following standard electrical engineering notation for total- and small-signal 
variables♣

                                                
♣ In the standard notation, static quantities are designated as having both upper-case letters with upper-case 
subscripts (ME) while s-domain quantities have lower-case subscripts (Me). Exception is taken here in allowing 
either case of subscripts for constants while making explicit the domain variable to designate s or other 
domains for the dependent variable of the function. The common practice of indicating incremental quantities 
with a circumflex (^) is not followed here; it is used to indicate peak value. 

; 
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)()(' )()1()( kiTkmTkmkiki LsDsULI +⋅⋅=⋅⋅+−= δδ  
 

where up-slope is mU during the on-time (Tan’s, Tymerski’s m1 and Ridley’s Sn), down-slope is  –mD during off-
time (Tan’s, Tymerski’s –m2 and Ridley’s –Sf ), and iI (ic elsewhere) is the commanding input to the control loop 
in the form of a peak current, vI/RS. The term RS (Ri elsewhere) is omitted in this analysis because it is easily 
reinserted into the loop equations. The index of iI is that of the minimum or valley sample of iL ending cycle k, 
iL(k). Input variable iI (k) changes where the peak of iL occurs, and is the value of the cycle after it changes.  

Observing iI (k) in more detail, the plot of iI shows iI (k) as the new value of iI at the moment of switching (Fig. 
2.) Both the sampled-loop model of Ridley and the unified model of Tan indexes iI at the sampling point of the 
switching cycle (Ridley, p. 273, eqn. 4; Tan, p. 399, Fig. 4). This alignment of iI with the sampling instant 
instead of the cycle appears at first to be insignificant because the value of iI affects circuit behavior only at the 
sampling instant. However, in modeling the current loop using the average inductor current, iI takes on an 
expanded role. 

Consequently, over the off-time interval of cycle k, 

)()()()( kikikiki CELIL =−=∆−  

 
Fig. 2. A plot of iI shows iI (k) as the new value of iI at the moment of switching.  

where –∆iL > 0 and iCE is the current-loop error. The previous sample interval ends at time [δ  + (k – 1)]⋅Ts–, as 
indicated by the open point of iI (k – 1) at [δ + (k – 1)]⋅Ts. Accordingly, ∆iL of cycle k – 1 is the cycle k on-time 
∆iL between the endpoint of cycle k – 1 and the open point at [δ + (k – 1)]⋅Ts, before iI changes♣♣

)1()1()1()1( −−−=−=−∆− kikikiki LICEL

: 

 

The equation for –∆iL(k) as derived from the off-time segment is 

)()()( kikiki LIL −=∆− .  

The change in inductor current for the up-slope is different than for the down-slope when not in steady-state. 
The down-slope ∆iL is that of the cycle: 

)()())()(()( kikikikiki ILLIL −=−−=∆ . 

                                                
♣♣ The total time of the waveform is the time within the cycle, where t is set to zero at the beginning of the 
cycle, plus the number of periods that have already gone by which is (k – 1)⋅Ts. Thus “cycle time” for cycle k is 
time offset by (k – 1)⋅Ts. 
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This implies (substituting k – 1 for k) that the up-slope ∆iL must be that of the previous (k – 1) cycle and that it 
ends just before iI changes from iI (k – 1) to iI (k). Consequently, the instant iI changes, Li  also either begins or 
ends its change, ending at the rate of mU for a positive change and beginning –mU for a negative change. The 
time interval over which Li  changes is approximately zero for small changes and the change in Li  is nearly 
coincident with that of the moment of iteration of iI. 

The two rightmost expressions of the waveform equations can be solved for iL; 

sDsDULL TmTkmmkiki ⋅−⋅⋅++−= )()()1()( δ . 

Then solving forδ, 
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and substituting into the first equation, 
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The incremental waveform equations for iL and δ  are found by taking the differential of the above equations: 

)(1)1()( ki
m
mki

m
mki i

U

D
l

U

D
l ⋅








++−⋅








−=  

sDU

ll

Tmm
kikikd
⋅+
−−

=
)(

)1()()(  

where the slopes are assumed constant for now and are dependent on converter switch voltages. The 
incremental change in input, ii, is coincident with the beginning of the change in inductor current, il. If the 
changes in il and ii each cycle are the same for each variable (il (k – 1) = il (k)), then il = ii. 

The waveform equations describe the behavior of the discrete inductor-current samples at the end of each 
cycle. These are the minimum or valley points of the waveform cycle, not the average. The current of interest 
to us is the average current because it is the quantity of current that is most useful in converter performance 
specification and is the desired output current. 

The waveform equations were also constructed without reference to slope-compensation schemes. They 
describe the actual behavior of iL(k) in slopes that can be measured from iL(t) at the converter output. The 
introduction of a compensating slope, iE, occurs in the PWM function where it will be placed later, and not in the 
converter function (Gid). The waveform equations as derived above are the resulting closed-loop converter 
behavior without introduction of slope compensation into the PWM block. 

The incremental variables are the small changes that occur from cycle to cycle and are of interest in 
incremental (small-signal) and linear analysis. Incremental equations describe the effect of infinitesimal 
perturbations from the steady-state operating parameter values of the quantities involved. These equations are 
not necessarily linear equations until they have been linearized by setting to zero the products of incremental 
quantities on the grounds that the product of already small changes is negligible. Instances of this occur in the 
following section.  
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The Slope Equations 

The slope equations relate converter inductor current slopes to converter parameters under steady-state 
operation. On the general assumption that the converter PWM switch is operating in steady-state and inductor 
flux is balanced (∆λ =L⋅∆iL = 0 over Ts), then 
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For steady-state response, ∆iL = 0 over a switching cycle of period Ts and 

0)'()( =∆=⋅⋅−⋅⋅ LsDsU iTmTm δδ . 

This balance must be maintained by control and if violated, these equations are not valid. 

For flux balance of L for any one cycle, 

∫ =⋅−=∆ sT

LC dtvv
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where subscript C denotes the switch common terminal in series with the inductor, and vL is the voltage on the 
other terminal of the inductor. Then it follows from the above equation that for steady-state operation, vC = vL. 
Flux balance can be expressed as 

∆λON + ∆λOFF = 0. 

Expressing the ∆λ terms in PWM-switch terminal voltages, 

')()( δδ ⋅−=⋅− LPLA vvvv  

where A and P are respectively the active and passive PWM-switch terminals. Then solving and substituting 
vC = vL, 
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Applying the basic PWM-switch relationships, 
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The off-time inductor voltage corresponds with ∆iL for the cycle. Then 
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Returning to the slopes and relating them to PWM-switch voltages, 
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where total offoffOFF vVv += . 

These slopes are held constant as is Li  between switching times of successive cycles (but not over the cycle). 
For constant slopes, then vOFF = Voff = Vap, a constant inductor voltage. 

The unified model of Tan uses the total slope equations: 
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These slopes relate to circuit quantities and describe what occurs in the converter circuit. What occurs in the 
PWM controller includes the compensating slope of magnitude mE which contributes to the sensed current, iS. 
The above relationships are not necessarily the slopes of iS; they are derived for iL instead. 

The total slopes, when perturbed and linearized, result in the incremental slope equations: 

LdVvDm offoffu /)'( ⋅−⋅=   

  LdVvDm offoffd /)( ⋅+⋅=  

Closure 

The waveform equations are discrete-time functions that can be also expressed in the frequency domain. The 
waveform and slope equations derived here lay the foundation for waveform-based current-loop modeling. In the 
next article, the dynamic equations for transfer functions of blocks in the current loop are derived. 
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