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Current-Loop Control In Switching Converters 

Part 4: Clarifications Of Existing Models 
By Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

The progression of models, from the low-frequency averaged model through Ridley’s sampled-loop model and 
on to Tan and Middlebrook’s effort to unify them in the unified model continues in the next part in the 
refinement of the unified model, the refined model. 

Moving forward in this discussion of current-mode control, we digress in our derivation of a unified model by 
taking a closer look at the existing models. The goal here is to obtain a better understanding of the various 
current-loop models by uncovering the similarities among these models as well as some of their underlying 
assumptions. These concepts set the stage for explaining the refined model of current-mode control that will be 
presented in Part 5.  

Equivalence Of Low-Frequency-Averaged And Unified iL 

An expression for the average current can be written from waveform geometry, noting that the average is half 
the ΔiL of the on- and off-time intervals and that the interval durations are included in the averaging; 
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The incremental lf-avg iL is given in E&M (p. 461, eqn 12.64) as 
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and includes an additional term for slope compensation.[1] The E&M derivation allows the slopes to vary with 
incremental values of mu and md to include the effects of vg and vo. The il are averaged over one period of the 
switching cycle. Substituting the incremental slopes into the lf-avg il, 
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This is equivalent to the corresponding expression of the unified model of Tan (p. 400, eqn 4).[2] This 
equivalency depends on the steady-state assumption because the averaging intervals are not the same for the 
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two models. The lf-avg model averages il over the switching cycle while the unified model of Tan averages 
between sampling-point peaks of iL. Yet for the same per-cycle waveforms, the average il is the same in value.  

For control of the current-waveform minimum extremum or the valley current, iI, 
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Moving He(s) Through The Summing Block 

One scheme for attempting to unify Ridley’s model[3] with the average current of the lf-avg model is to simply 
move the He(s) block through the loop summer, distributing it in both input and output branches of the 
summer: 
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This would put 1/He(s) in the input path. Not only is the input quantity then sampled and held, resulting in an 
iterative discrete-time iI (k), it is also advanced by being shifted to the k – 1 cycle:  
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The additional forward-path He(s) combines with the PWM block (Fm0) to form a new Fm(s). Expressed using 
H0(s),  
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The He(s) function can thus be interpreted as an inverse ZOH with a one-cycle time delay: a differentiator which 
repeats every Ts, making impulses out of the steps in the stepped incremental current waveform and shifting 
them in time to the next cycle. This one-cycle delay in the forward path is negated in the input path by 1/He but 
not without first combining the feedback with input ii (k –1) from the previous cycle. 

The movement of He (s) forward in the feedback block diagram shows possibilities for a unified model while 
removing the obstacle to transfer-function formation of the time-variance of the loop. In the Ridley model, the 
sampling function is in the feedback loop. In contrast, sampling occurs in the forward path of the unified model. 
This difference is important because of time-variance. With the sampler in the feedback loop, the sensed 
inductor current, 

Sll Riv ⋅=  

is sampled; vl → vl* and is the input to He(s). In sampling systems, a sampled variable is a free variable. 
Thus vl* is the free variable; the error quantity, ve, is not. This prevents the construction of a transfer function 
in the loop of the Ridley model. 

To show this, write the feedback loop equations starting with the sampled quantity in the feedback path: 
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Then converting this equation to a sampled form and substituting, 
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The factors of the last term, (RS⋅il)* are not separable;  
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If the sampler is moved after He, the feedback quantity input to the summer is (He⋅RS⋅il)* and this expression is 
also not separable; il cannot be separated out. In either case, the transfer function, il /ii, cannot be derived 
without ignoring Nyquist-band harmonics and the piecewise discontinuities in the waveform steps, as does the 
lf-avg model.  

The unified model effectively places the sampler at the input to the forward path so that ve is sampled: 
ve → ve*. This makes ve* and hence ii* free variables (because they are related by addition over which the * 
operation is distributive). The loop equations for the unified model are, beginning with the sampled quantity, 
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where in this case G is for the unified forward path. Then sampling il and substituting, 
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noting that in general 
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and the already-sampled X* is free to be factored out. Then for the current, 

*)(1
**)*(

*
***

GR
vGvGvGi
S

i
eel ⋅+

⋅=⋅=⋅=  

Because *
iv  is a free variable, the transfer function exists and is 

*)(1
*

*

*

GR
G

v
i

Si

l

⋅+
=  

Consequently, the unified model has a transfer function, though time-variant, whereas the sampled-loop model 
cannot be decomposed algebraically and constructed into a transfer function. This is a justification for preferring 
a model that samples ve, with sampler at the input to the forward path, G, so that a transfer function can be 
derived. 

Simple Unified Model Derivation Of Fm(s) 

In their work, Hong, Choi, and Ahn state that it is more conceptually appealing than in Ridley’s model to put the 
sampling function where circuit sampling occurs, in or adjacent to the PWM function of the forward path.[4] This 
is a major feature of the unified model, where what is unified are the lf-avg inductor current and the sampled 
loop dynamics with Fm(s) in the forward path, allowing TC formation for a time-variant feedback loop. 

If the effects of slope compensation are included in the derivation of TCV, then the PWM transfer function, Fm, 
can be found. Hong, Choi, and Ahn present a derivation that is rather straightforward based on instantaneous 
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sampling (stepped il) and Ridley’s sampled-loop model. The derivation given here parallels theirs. Given the 
existence of a transfer function, we can equate the closed-loop feedback equation, 
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with the incremental valley-current sampled-loop expression as derived in Ridley’s model, 
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GidV(s) is the converter transfer function il /d and was derived from the valley current independent of converter 
topology; 
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Having an expression for GidV, we return to the derivation of FmV(s), make the substitution for GidV and solve;  
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The static FmV0 is 
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FmV has a single pole at 

)(
2 2

1 Ds
P −⋅⋅






= π
ω

ω  

which is the same pole as in the unified model of Tan. 

The TCV derived from the sampled loop was equated with the general closed-loop feedback expression which in 
itself does not include the effects of loop sampling. If iCe, the error current of the loop (at the output of the 
summer) of the unified model is sampled, then iCe is a free sampled variable, iCe*(s), and a transfer function can 
be constructed. The error quantity, however, is not the input to the PWM block when slope compensation is 
included. 
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Closure 

The three sections of this part offered intimations of improvement in current-loop modeling by identifying what 
is the same in different models, though expressed differently; hidden assumptions underlying error in the 
sampled-loop model and how these assumptions might be circumvented; and a simplified development of the 
unified model as a prelude to a refinement of it. The various aspects of existing models expounded in this part 
prepare the way to examine the refined model, presented in the next part. 
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For more on current-mode control methods, see the How2Power Design Guide, select the Advanced Search 
option, go to Search by Design Guide Category, and select “Control Methods” in the Design Area category. 
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