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Current-Loop Control In Switching Converters 

Part 5: Refined Model 

By Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

In the previous sections of this article, we have discussed the historical development of the various models of 
current-mode control, compared and contrasted those models, and derived various expressions that lay the 
groundwork for developing a refined version of the unified model originated by Tan and Middlebrook. Here in 
part 5, we now present a refined model of current-mode control that overcomes some of the limitations of the 
existing models that have been previously discussed.  

A Refined Unified Model 

The “unified” models are not fundamentally unified but are piecemeal adaptations of various features of lf-avg 

and sampled-loop modeling. The phase introduced by sampling does not directly shift li  in the cycle. The 

constant factor in the PWM transfer function, Fm0, is derived from the cycle-averaged inductor current while the 
dynamics are taken from the sampled-loop model. 

For a truly unified model, the full frequency response of the blocks in the block diagram of the model—including 
static and dynamic factors of transfer functions—should be derived from a single set of general equations 
describing converter circuits. Tymerski achieved considerable unification of dynamic per-cycle-average inductor 
current with sampled-loop dynamics in a single set of state-variable equations. Elsewhere, the static Fm0 was 

extracted from the discrete-time duty-ratio equations. In Tan and the simple unified model, Fm0 is extracted out 

of 
li  from lf-avg equations but is not used in sampled-loop dynamics derivations. 

The direction taken here is to express li  in the discrete time-domain early in the sampling analysis so that 

subsequent development results in dynamics are based on it, thereby modeling li  dynamically and allowing Fm0 

to fall out of the derivation. 

The substitution of li  for il in the waveform-derived current-loop transfer function not only changes the 

constant gain of GidV by ½ but it also introduces additional ii terms in the difference equation of )(kil  which 

result in the average-current transfer-function in z: 
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Although the rightmost expression is a simple relationship, it is intractable for further analysis because there is 
no s-domain transform for the constant (1) term. The z  s*  s transform requires Z–1{1}, which in the time-

domain is a discrete value of 1 at k = 0 and is zero elsewhere—an initial value for which there is no defined 

transform to s. Consequently the expression is retained in the form of the rational function in z. 

TC (z) is transformed to the sampled s-domain; 
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To produce a stepped version of this sampled function, it is multiplied by H0(s): 
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Applying Tymerski’s two-point fit of He (s), 
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the resulting approximation is 
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TC has the pole-pair of the sampled-loop TCV with stability for D < ½. The numerator accounts for the phase 

shift of )(kil  from the valley value of il (k). By applying the two-point “modified Padé” approximation for the 

exponential, 
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The complete transfer function is 
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In addition to the sampled-loop pole-pair this function has a pole-pair at a fixed damping of  = /4  0.785 and 

pole angle of about 38.24. It also has a LHP complex zero-pair with damping  
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z varies with D = [0, ½, 1] by z = [/4, /8, 0] corresponding to zero angles of z  [38.24, 66.88, 90]. The 

MathCAD plots of TC are given below with D as parameter, fs = 200 kHz, L = 100 H, and Voff = 17 V. 
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Fig. 1. Average-current transfer-function with D as parameter. 

TC = TCV for D = 0, for then either pole-pair and the zero-pair cancel. The zero-pair and both pole-pairs have 
equal pole radii, that of the Nyquist frequency, s/2. The zero-pair and pole-pair become increasingly 

underdamped as D increases, moving circularly on the fixed pole radius until they reach the j-axis, at D = 1 

for the zero-pair and at D = ½ for the pole-pair. As D increases, the pole-pair underdamps more than the zero-

pair until it reaches resonance at the Nyquist frequency, where phase is zero. Phase advance of the zero-pair 
can be seen for TC near s/2 and D = ½.    

Following the construction of the simple unified model, loop sampling is at the error function and a transfer 
function exists. Equate the expression of TC(s) with that of the closed feedback loop: 
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Then solve for the new expression for Fm(s), which is 
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Substituting, 
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In normalized form, 
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Fm(s)/Fm(0 s–1, D = 0) is plotted below in dBV with D as parameter, fs = 200 kHz, L = 100 H, and Voff = 17 V.  
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Fig. 2. Normalized PWM transfer function of refined model with D as parameter.  

With a Gid unity-gain intercept at fs, then Gid0 =  ½ and for D = ½ the forward-path static gain without slope 
compensation is one. The forward-path G0 is twice that of the sampled-loop model. Both magnitude and phase 
of Fm(s) are flat, increasing significantly in the last decade before the Nyquist frequency. This constitutes a 

small low-frequency deviation from models that use a frequency-independent Fm, though phase lead in the final 
decade (approaching 45 for large D) is a significant departure. 

The cubic denominator of Fm(s) factors into  
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where for [s/(s/2)]2 << 1, then the rightmost term is approximately zero and 
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This is not unlike the single-pole Fm(s) of the unified model in Tan. With Gid = ½  GidV, then compared to the 

sampled-loop static forward-path gain, Fm0 is effectively 2/IL0D’. This Fm0 is the same as the Fairchild model. 

Unlike the simple-unified model (and that of Tan), at D = ½, Fm0 does not go to infinity and is  
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The simple-unified model Fm0 goes to infinity at D = ½ whereas the alternative Fm expressions remain finite. 

Fm(s) does not have the single pole, p, of the simple-unified model. The zero-pair accounts for the phase lead 

of the average current relative to the valley current at the end of the cycle. The average current leads the 
valley current sample by D’Ts and this phase lead is evident in Fm(s) when D is far from zero by the rise in 

phase in the last decade before the Nyquist frequency. The simple-unified model FmV pole differs by the factor 

(½ – D) instead of D’ when compared to the real pole of the factored denominator of Fm(s) for D = ½. The 
simple-unified pole of FmV(s) goes to zero at D = ½. As D approaches ½ the responses of the two models 
diverge. Fm(s) retains the resonance at D = ½ but it does not appear in Fm0 as it does in FmV0.  

In summary, the refined model provides a deeper unification of the quasistatic or low-frequency current-loop 
behavior with the sampling aspects by deriving the dynamics equations for transfer functions from the average 

current variable rather than the valley current. The average current extends over the entire switching cycle 
whereas the valley current pertains to one point in the cycle. This difference results in additional phase shift in 
the zero-pair of the transfer function of the refined model that accounts for the phase of the average current 
over the cycle. 

What has yet to be considered in the next two sections of this article is the effect of slope compensation, which 
will be taken up in part 6. Then in the final section, part 7, we will return to a comparison of the important PWM 
factor, Fm0 in the current loop and show that the refined model is compatible with the major existing models 
when reduced to accommodate their limiting assumptions. Finally, what is left to do in completing the current-
loop modeling task— that of merging waveform-based and circuit-based modeling—ends this long article.  
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For more on current-mode control methods, see the How2Power Design Guide, select the Advanced Search 
option, go to Search by Design Guide Category, and select “Control Methods” in the Design Area category. 
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