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Current-Loop Control In Switching Converters 

Part 7: Fm0 In Models 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

This article on modeling of current-mode control concludes with a discussion of the PWM factor, Fm0. The refined 

model of current-mode control presented in part 5 is shown to be compatible with the major existing models 
when their limiting assumptions are factored in. This discussion refers back to expressions for the three slope-
compensation methods derived in part 6. Finally, this lengthy process of modeling the current-loop ends by 
discussing the advantages and limitations of waveform-based models versus circuit-based models, and why it 

would be desirable to merge these two approaches. 

Fm0 In Models 

Perhaps the most difficult model parameter to determine is Fm0, which is the static form of the PWM transfer 

function Fm. Expressions for it differ by the method of slope compensation (which affects iS (k)), whether the 

inductor current is the valley il or average li , and the configuration of the model for feedback of vO and vG into 

the error quantity driving Fm. 

Slope expressions can be converted to duty-ratio expressions using slope formulas modified to include mE: 
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From these it follows for slope-compensation methods 1 and 2 that for steady-state response, 
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Simple Unified Model 

In their model development, Hong, Choi, and Ahn[1] begin with a steady-state expression (eq 14) for FmV0 (Fm’) 

that is equivalent to 
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FmV0 of the simple unified model is based on il and not li . In their paper, Hong, Choi, and Ahn claim that the 

simplified derivation of the unified model, as given above for FmV0 is identical to the unified model of Tan. Tan 

gives both the li -based unified (eqn 7, p. 400) and simple sampled-il unified (eqn 17, p. 401) expressions for 

Fm0.
[2] 

This Fm0 goes to infinity at D = ½ as will the static loop gain. This of itself can make continuous feedback loops 

unstable. The additional (½ – D) factor in p will cause p to move to 0 s–1 as D approaches ½. As Fm0 
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approaches infinity by the same factor, the closed-loop 1 + GH multiplication of p keeps the closed-loop pole 

frequency at the Nyquist frequency.  

LF-Avg Model And Unified Model Of Tan 

FmV0 results from TCV and GidV and is not the Fm0 of the li -based lf-avg model of E&M[3]: Fm0 = 1/MeTs = 1/Ie, 

where d is implicit in additional terms of li containing mu and md. A more explicit li -based Fm0 used by Tan 

expands the terms in d in the li  equation (repeated here):  
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Then for voff = 0, 
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which is effectively a lf-avg Fm0 after the feedback loops for vO and vG have been reorganized according to the 

unified-model block diagram. Hong, Choi, and Ahn claim (p. 730, near bottom) that the resulting Fm(s) “agrees 

precisely” with that of Tan. However, Tan’s equation (eq 7, p. 400) for the full unified model is the lf-avg Fm0. 

Both the simple-unified and lf-avg (with slope compensation) models have the (½ – D) factor in Fm0.  

Sampled-Loop Model 

The sampled-loop Fm0 of Ridley (p. 275, Table I)[4] is based on a PWM circuit that coincides with slope 

compensation method 3 waveform analysis (no mE during off-time): 
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It is lower in value than the previous expressions in that 1 – D in the denominator is larger than (½ – D), and is 

the same as the refined model. Tymerski[5] uses Ridley’s Fm0. It does not contain discontinuity at half D and 

does not become infinite there. The sampled-loop model accounts for the “half-D resonance” in the pole-pair 
linear-term coefficient and thereby places the dynamics of the loop in the dynamic factor of the loop transfer 

function. 

Holloway and Eirea (and Middlebrook) Model  

Holloway and Eirea[6] give an improved Fm0 for the sampled-loop model, which can be derived from an average-

current equation from Tymerski based on the first slope-compensation method. In steady-state, 
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Solving, 

'

1

)(

1

02
1

2
10

DITmTmm
F

LsEsEU

m





 . 

This Fm0 is for the sampled-loop model of Ridley but with li  instead of il and is thus more useful.  

Refined Model 

As derived for the uncompensated loop, 
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It is similar to the sampled-loop and Holloway and Eirea values except for the scale factor of 4 that gives it 
twice the gain. The total forward path, G, thus has a net static gain that is twice that of the sampled-loop and 

Holloway and Eirea models because Gid (for average il) is half that of GidV. For all of the models, Fm0 increases 

(nonlinearly) with D and is positive. 

The cubic denominator in Fm0(s) can be simplified to 
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Then if the ½ of Gid is brought into Fm0,  

'

1

2
1

0

0
DI

F
L

m


 . 

and is the same as the Holloway and Eirea Fm0. 

To conclude about Fm0, when the ½ factor that is the difference of the valley and average current variables in 

the models is taken into account, all dynamic models considered agree except the unified model of Tan. Even 
the earlier Middlebrook model is in agreement. The refined model, when reduced for comparison, is also in 
agreement. 

Fm With Localized Slope Compensation 

In the derivation of the simple unified model, the feedback formula was equated to TCV and given GidV, FmV is 

free and can be solved. This implicit method of finding Fm entangles the slope-compensation scheme associated 

with Fm with the waveform equations so that it is hard to separate compensation effects from converter 

waveforms. In the direction taken here, no compensation methods were introduced when deriving current 

waveforms and slope formulas. They are based solely on converter parameters. In this section, is is derived at 

the input to the forward path of the loop. 
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The uncompensated incremental average-current waveform equation, 
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can be expressed in iCe and ii as 
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Then in the z-domain, 
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Substituting iCe(z) into is, 
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The term is is a time-dependent sum of iCe and ie because it contains error and input quantities from cycles (k –

1) and k. In the sampled s-domain, it is 
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This can be put in the form of a current loop with He(s) moved through the summing block: 
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The new input is )(/)(* sHsi ei  and the new iCe is )()( * sisH Cee  . Then is*(s) has a cycle gain of –D/D’, the error 

is stepped (as are both input and feedback quantities), and the input is half the differentiated new input from 

the previous cycle. Compensation is added to this. A simpler expression for is*(s) is 
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The error plus half the input from the previous cycle has from it subtracted half the input of the present cycle 

(plus compensation), and this is amplified by the cycle gain. With no change in input (ii = 0 A), the loop stability 

as expressed in is depends on the cycle gain and ie. For D ≥ ½ then D/D’ ≥ 1 and ie is required to subtract from 

the iCe term to effectively reduce gain to less than one in magnitude. 

Slope Variation From Input And Output Voltages 

In the unified model, the effects of vG and vO are combined in the more general variable, vOFF. The converter Gid 

is derived in steady-state with vOFF = Voff and the effects of voff are relegated to the Foff path in the model, 

which adds an additional loop error term to account for vOFF variations: 
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One of the improvements of the unified model over the sampled-loop model was the relocation of sampling 

effects from the feedback path to the block, Fm , in which they occur. Placement of effects with their causes was 

not complete, however, in that the effects of vOFF were not placed where they occur, in the converter block, Gid. 

By placing the effects of vOFF back into Gid, and for generality adding ACe (which is 1 in most models), the 

resulting general block diagram for a voltage-regulated converter with a current loop is shown below, with 

Ri = HC·RS (see the figure.)  

The converter is decomposed into Gid and Goi blocks to allow iL to be extracted from Gid as the feedback 

quantity in the current loop. Also, Goi and Zo are separated because Goi is part of the converter while Zo is its 
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output-port load. For this modeling scheme, converter topologies must be solved for Gid and Goi. This somewhat 

resembles the lf-avg model, which has two pairs of transfer functions, one for vo and the other for il.  

The effects of vG and vO on current slopes complicates waveform-based models immensely. By inputting vOFF 

into Gid, no longer are the current and voltage loops neatly nested to allow for modular loop decomposition. 

Nested decomposition is retained by feeding back the effects of vOFF to the current-loop summing block. This 

feedback path, Foff , is in parallel with the voltage-feedback path and can be treated as having an effect outside 

the current loop. This frees Gid from vOFF variations. The static Voff is input to Gid and as a constant also keeps 

ΔiL0 constant. Then the effects of voff can be handled as an additional current-loop input, through Foff. The 

effects of voff are thus placed in the outer voltage loop. All waveform-based models feed back vOFF to the 

current-loop error summing block.  

 
Figure. Generalized block diagram of the refined model for a voltage-regulated converter with a 

current loop. 

The rationale for inclusion of the vOFF effects in the error quantity is illustrated in the unified model. It uses the 

waveform-derived expression for the average inductor current,  

sDUIssDsUIL TmmiTTmTmii  )]'[(]')'()[( 22

2
1

2
1  . 

This can be written explicitly as the error, 

sDULICE Tmmiii  )]'[( 22

2
1  . 

Substituting for the total slopes from the slope equations,  
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This simplifies to 
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Then the incremental iCE can be determined by perturbing both δ and vOFF of iCE and linearizing to result in 
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Foff ·voff is the second term of the expression. Consequently, it is appealing to simply account for the effects of 

vOFF as an additional feedback-path error term. The Foff block can be summed by the current-loop summer as 

an addition to vVa. The slope compensation waveform vE can be summed either at the summing block or with 

vCa, which can be treated for analysis as the error quantity in transfer function formation with loop sampling. 

Expressed explicitly, 
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where voff is the PWM switch voltage vap during off-time.  

Another reason for separating the effects of voff from the current loop is the dependence of voff on the circuit 

structure. For the three PWM-switch configurations, voff differs among configurations. With voff we face circuit 

dependencies for the model and are forced to abandon a purely waveform-based modeling scheme. 

The first term in the iCe equation is the effect on Gid of the static Voff component of vOFF. For ii = 0 A, then the 

term for Voff adds to the previously-derived Gid as 

off
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The current-loop model is thus essentially finished with the determination of Foff and Gid(Voff). Inclusion of Foff 

requires the conversion of loop input and error currents, iI and iCe to voltages vVa and vCe respectively: 

CeSCeISI iRviRv   ;  

This is easily accomplished in the complete converter block diagram by moving RS forward from its place in the 

feedback path, through the summing block to input and error quantities, where it is multiplied by them. 

Waveform- And Circuit-Based Model Convergence 

The direction of model development taken here and in the lf-avg, sampled-loop, and unified models is to begin 
with circuit behavior instead of structure, as the inductor-current waveform from which to construct a general 
behavioral model. This has appeal in that the results are circuit-independent and apply to any topology of 

converter with the assumed waveform. The limitation of the waveform model that is avoided by circuit-based 
modeling is that it applies only to converters with the assumed linear inductor-current waveform.  

The inability to achieve a purely waveform-based model because of the circuit dependence of vOFF suggests that 

there is yet one further refinement needed in current-loop modeling, that of a convergence of a generalized 
circuit model with the refined waveform model. Circuit-based modeling has been advanced by Robert 
Sheehan[7] by beginning with particular circuits, analyzing them, and then seeking to generalize to a less circuit-

dependent model. Sheehan’s circuit-driven approach to converter modeling lumps Gid, Goi, and Zo together in 

the circuit equations to produce vo/d as the transfer function of interest, with the effects of vOFF included in the 

circuit equations. The circuit variable common to the three PWM-switch configurations is vSW, the voltage 

applied at the PWM-switch common terminal to the inductor. This method of analysis should be appealing to 
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electronics engineers because of its concrete focus on the circuits and their equations. Sheehan derives 

equations for the three PWM-switch configurations and then proceeds to generalize from them. 

To illustrate the more accurate result of circuit-based modeling, Gid of the sampled-loop, unified, and refined 

models is derived from waveform-based loop analysis and is an integrator of constant inductor voltage, Voff. The 

result for Gid is a pole at the origin. Converter circuit analysis quickly reveals that quadratic pole-pairs and an 

RHP zero appear in Gid when the effects of Zo, and consequently vo, are included. The steady-state Gid relegates 

the effects of voff to a different feedback path and block in the waveform models—in the refined model as the 

path through Foff (elsewhere Fv and Fg, or K). While this choice of functional decomposition is entirely valid, 

placement of the effects of vOFF back into Gid is what makes Sheehan’s approach appealing; it makes the 

relationship between model and circuit more explicit. 

To illustrate the greater complexity of actual circuits, analysis of the common-inductor (buck-boost) 
configuration results in 
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where Ro is the real part of Zo. For a simple case, let the load Zo = Ro. Then 
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Even in this simple case, the pole is not at the origin but is finite. Consequently, the inductor waveform is only 
approximately a triangle-wave. 

Closure 

As for now, both waveform and circuit modeling complement each other, though they also motivate a search for 
a convergence. Waveform-based models begin with general waveform behavior and apply to any circuit 
structure for which the behavior is an approximation. Waveform models lose their generality when attempting 

completion by including vOFF because the Foff and Gid blocks are dependent upon the circuit configuration. 

Circuit-based modeling begins with particular circuits and suffers from a lack of behavioral generality which is 
then sought by discovering common features in the different circuit behaviors such as the common variable 

vSW. A final step in this decades-long modeling effort is to seek the convergence of waveform-based modeling 

with circuit-based modeling.  

Sheehan’s circuit simulation results show that the unified model with delay in the forward path matches 
simulation results most closely. The refined model is essentially the same kind of model, though derived from 

first principles without the ad hoc combination of a choice of Fm0 based on independent considerations. The 

refined model makes no such arbitrary choices yet the early results appear to match Sheehan’s simulation 

results. More research on the extent of this matching is desired and the early returns leave me hopeful. 
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