

ISSUE: February 2015

Choose The Right Regulator For The Job (Part 3): Component Selection

by Don Corey, Maxim Integrated, Chelmsford, Mass.

This article is part 3 of a three-part series on power regulators. In part 1, we discussed regulator control schemes and examined the critical differences between current-mode (CM) and voltage-mode (VM) control. In part 2 we discussed pulse frequency modulation, hysteretic, and constant on-time control techniques. Now that we understand the basic fundamentals of these different converter types, in this part 3, we will look at some regulator examples, proceeding from component selection to actual design.

Fundamental Equations For Designing DC-DC Converters

Before we dive into part selection and a simulation design example, it is important to understand some basic equations used to choose the inductors and capacitors for switch-mode converters.

Inductor Selection

The equation for inductor selection for a switching converter is derived from the basic equation for an inductor:

di/dt = $\Delta V/L$.

Therefore

L=∆V dt/di

where di is the peak-to-peak inductor ripple current and is defined as LIR × I_{OUT} . LIR is the ratio of the inductor peak-to-peak ripple current to the average dc inductor current at full load current. (A typical value for LIR is 0.3.) In addition, dt = $V_{OUT}/V_{IN} \times 1/F_{SW}$, where F_{SW} is the converter switching frequency; and ΔV is the voltage across the inductor and is defined as $V_{IN(MAX)}$ - V_{OUT} .

Putting it all together, we derive:

 $L = V_{OUT} \times (V_{IN(MAX)} - V_{OUT}) / V_{IN(MAX)} \times F_{SW} \times I_{OUT(MAX)} \times LIR.$

How about a practical example? Suppose that a designer needs to design a dc-dc regulator with the following requirements: $I_{OUT} = 2.7 \text{ A}$, $V_{IN(MAX)} = 12 \text{ V}$, and $V_{OUT} = 5 \text{ V}$.

For this example we choose an LIR value of 30%. Start with:

L min = 5 V × (12 V - 5 V)/12 V × 600 kHz × 2.7 A × 0.3 = 6 μ H.

For this design, the most common standard values would be 5.6 μ H or 6.8 μ H. With a 6.8- μ H inductor value the nominal peak-to-peak current is 0.72 A. As such, the peak current in the inductor will be 2.7 A + 0.5 × 0.72 A = 3.06 A. When choosing the inductor, the saturation rating is very important. The I_{SAT} rating must be greater than the maximum current limit of the stepdown converter. The MAX17504 is a 3.5 A regulator that could be considered for this design. From its datasheet, the maximum current limit is 5.85 A, so the inductor I_{SAT} rating must be greater than 5.85 A.

The other important parameter for inductor selection is the dc series resistance (DCR). Designers are always faced with a tradeoff of inductor size versus efficiency, as the DCR represents a source of power loss. The other power loss to consider is the core loss. The two inductor current ratings are continuous (I_{RMS}) and peak (I_{SAT}). I_{RMS} is normally specified as the dc current that produces an inductor temperature rise of 40°C. I _{SAT} is the peak current that produces a specific roll-off in inductance, specified as a percentage reduction from the open-circuit value; it can vary from 5% to 50%.

A good article that I included in the reference section titled, "Estimate Inductor Losses Easily in Power Supply Designs,"^[1] provides a great reference to understand power losses in inductors. I have also found that there are many free, online inductor design tools that are quite useful.

One nifty online tool for inductor selection is from Vishay and found on their website.^[2] This tool will calculate all the power losses in the inductor. Fig. 1 is a result from that tool and based on the above example. I also found that Coilcraft^[3,4] has some helpful online tools that help you select the inductor value and calculate the power losses.

Enter d Frequen In ent Terr Volts Volts O Vs	IHLP Inplata in icy = Ind = In = Dut = Sw = VD =	-4040D puts: to yello 2 2 1 0.0	2-5A- 6.3 w fields 0000 .7 25 12 5 025	 Buck Hz Amps C Volts Volts Volts 	uH Ind. Loss Ca	Outputs 4.87 392331.9 0.024122 3.06 2.34 0.72	V-usec Hertz Ohms Amps Amps	Inductance 25° C DC Res Isat I(Heat) Induct	6.8 0.02090 9.0 9.1 or Current (One Cy	μH Ohms Amps Amps role)	
Enter d Frequen In ent Terr Volts Volts O Vs	Ing lata in log = lind = np = lind =	puts: to yello 600 2 2 1 0.0 0.0	w fields 0000 .7 25 12 5 5 025	Hz Amps °C Volts Volts Volts	ETot F(eff) Res I _{max} Imn	Outputs 4.87 392331.9 0.024122 3.06 2.34 0.72	V-usec Hertz Ohms Amps Amps	25° C DC Res Isat I(Hest) Induct	0.02090 9.0 9.1 or Current (One Cy	Ohms Amps Amps role)	
Enter d Frequen I ent Terr Volts O Volts O	Inp Iata in Ioy = Ind = In = Dut = SW = VD =	puts: to yello 600 2 2 1 0.0 0.0	w fields 0000 .7 25 22 5 225	Hz Amps °C Volts Volts Volts	ET _{ot} F(eff) Res I _{max} Imn	Outputs 4.87 392331.9 0.024122 3.06 2.34 0.72	V-usec Hertz Ohms Amps Amps	Isat I(Hest) Induct	9.0 9.1 or Current (One Cy	Amps Amps (cle)	
Enter d Frequen I ent Ten Volts Volts O Vs	lata in icy = lind = inp = in = out = sw = V _D =	10 yello 600 2 2 1 1 9 0.0	w fields 0000 .7 25 12 5 025	Hz Amps °C Volts Volts Volts	ET _{cit} F(eff) Res I _{max} Imn	4.87 392331.9 0.024122 3.06 2.34 0.72	V-usec Hertz Ohms Amps Amps	I(Heat) Induct	9.1 or Current (One C)	Amps rcle)	
Frequen In ent Ten Volts Volts O V ₅	ioy = lind = inp = lin = out = sw = V _D =	600 2 2 1 9 0.0	0000 .7 .25 .12 .5 .025	Hz Amps C Volts Volts Volts	ET _{ott} F(eff) Res I _{max} I _{min}	4.87 392331.9 0.024122 3.06 2.34 0.72	V-usec Hertz Ohms Amps Amps	3.1	or Current (One C)	ycle)	
I ent Ten Volts Volts O Vs	lind = np = ln = Dut = sw = V_D =	2 2 1 0.0	.7 25 12 5 025	Amps °C Volts Volts Volts	F(eff) Res I _{max} I _{min} I _{rtipole}	392331.9 0.024122 3.06 2.34 0.72	Hertz Ohms Amps Amps	3.1			
ent Ten Volts Volts O Vs	np = In = Dut = SW = VD =	2	25 12 5 025	℃VoltsVoltsVolts	Res I _{max} Imin I _{ritopie}	0.024122 3.06 2.34 0.72	Ohms Amps Amps				
Volts Volts O Vs	In = Out = SW = VD =	0.0	12 5 025	Volts Volts Volts	I _{max} Imin Iritoote	3.06 2.34 0.72	Amps Amps				
Volts O Vs	out = sw = V _D =	0.0	5 025	Volts Volts	Imin Iripole	2.34	Amps				
Vs	sw = VD =	0.0	025	Volts	Iripple	0.72	Amos				
1	VD =	0.0	525	VOILS	siccin	11//					
· · · ·	VD =	0.0		Descention 1		0.12	Amps	2.0			
		0.0	025	Volts	Duty	0.42					
			_		Poore	0.055	Watts				
ET1	100 =	3.	38	V- usec	Pdc	0.176	Watts				
B	B _{pk} =	144.0		G	Pac	0.068	Watts	1.0			
A 0.4	453	Inch	11.5	mm	Ptot	0.299	Watts				
B 0.4	405	Inch	10.3	mm	Temp. Coeff.	20.0	•C/W				
C 0.	158	Inch	4.0	mm	Temp Rise	6.0	°C				
					Comp Temp	31.0	°C	0.0	0.5 1	1.5 1.67	
nce		1.	.1		Compared	to IHLP-25250	Z-01	Time (µSec) Notes May Be Added Here:			
				, t	Warn	ing Messages:	2				
	ET A 0. B 0. C 0. ence st	ET100 = Bpk = A 0.453 B 0.405 C 0.158 ence st A -	ET100 = 3 Bpk = 14 A 0.453 Inch B 0.405 Inch C 0.158 Inch anoe st 1.	ET100 = 3.38 Bpk = 144.0 A 0.453 Inch 11.5 B 0.405 Inch 10.3 C 0.158 Inch 4.0 anoe st 1.1	$ET_{100} = 3.38 V_{usec}^{2}$ $B_{pk} = 144.0 G$ A 0.453 Inch 11.5 mm B 0.405 Inch 10.3 mm C 0.158 Inch 4.0 mm anoe t 1.1 C 0.158 Inch 4.0 mm C	ET100 = 3.38 V- usec P60 Bpk = 144.0 G Pac A 0.453 Inch 11.5 mm Pmt B 0.405 Inch 10.3 mm Ceoff. C 0.158 Inch 4.0 mm Temp Rise C 0.158 Inch 4.0 mm Temp Rise 1.1 Compared the format of the for	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ET100 3.38 V- usec Pore 0.055 Watts Bpx 144.0 G Pac 0.176 Watts A 0.453 Inch 11.5 mm Pwt 0.299 Watts B 0.405 Inch 10.3 mm Temp. Coeff. 20.0 °C/W C 0.158 Inch 4.0 mm Temp Rise 6.0 °C C 0.158 Inch 4.0 mm Temp Rise 6.0 °C ence 1.1 Comp Temp 31.0 °C	ET100 3.38 V- usec Pore 0.055 Watts B 3.38 V- usec Pore 0.176 Watts A 0.453 Inch 11.5 mm Pix 0.299 Watts B 0.405 Inch 10.3 mm Temp. Coeff. 20.0 °CW C 0.158 Inch 4.0 mm Temp. Coeff. 20.0 °CW anoe 1.1 Compared to IHLP-2525CZ-01 0.0 °C °C Marring Messages: V V V Notes °C	ET100 3.38 V- usec Pore 0.055 Watts B 144.0 G Pac 0.068 Watts A 0.453 Inch 11.5 mm Pwr 0.299 Watts B 0.405 Inch 10.3 mm Temp. Coeff. 20.0 % C 0.158 Inch 4.0 mm Temp. Rise 6.0 % anoe 1.1 Compared to IHLP-2525CZ-01 Time (µSec) Marring Messages: Warning Messages: Notes May Be Added He	

Fig. 1. Vishay Inductor Calculation display results. Graphic supplied with permission from Vishay Intertechnology.

Capacitor Selection

We begin with a short discussion about the three types of ceramic capacitors, Class I, Class II, and Class III where Class I also includes the common CGO (NPO) type. The most common types are X5R, X7R, and Y5V. It is important to understand the difference among these types when specifying a ceramic capacitor for switching regulators.

The change of capacitance over temperature is a very important characteristic and should be considered. The table below is assembled from data that I have seen from ceramic capacitor suppliers' websites. This table clearly shows the change in capacitance over temperature.

Туре	% ΔC	Temperature range (°C)	Tolerance (%)
X5R	±15	-55 to +85	$K = \pm 10$
X7R	±15	-55 to +125	$K = \pm 10$
Y5V	+22/-82	-30 to +85	Z = -20/+80
Z5U	±22/-56	-10 to +85	$M = \pm 20$
NPO	±30PPM/°C	-55 to +125	J = ±5

Table. Capacitance change with temperature

To further complicate matters, the actual capacitance value also changes with the applied dc bias. Fig. 2 is a plot from Maxim Integrated tutorial 5527^[5] on choosing ceramic capacitors. It illustrates our point. I highly recommend that the reader take the time to consult this practical tutorial for it contains good application data and provides good common-sense design examples!

Fig. 2. Temperature variation vs. dc voltage for select 4.7-µF capacitors.

Practical Guide for Selecting the Input and Output Capacitors

Input Capacitor Selection

Why do I need an input capacitor? The input filter capacitor reduces peak currents drawn from the power source; it reduces noise and voltage ripple on the input caused by the circuit's switching. The input capacitor's RMS current requirement (I_{RMS}) is defined by the following equation:

 $I_{RMS} = I_{OUT(MAX)} \times \sqrt{[V_{OUT} \times (V_{IN} - V_{OUT})/V_{IN}]}$

where, $I_{OUT(MAX)}$ is the maximum load current. I_{RMS} has a maximum value when the input voltage equals twice the output voltage. Without getting into a long derivation, we can use the basic equation for a capacitor, C= I dV/dt, and derive:

 $C_{IN} = I_{OUT(MAX)} \times D \times (1-D)/n \times F_{SW} \times \Delta V_{IN}$

where D is the duty cycle ratio = V_{OUT}/V_{IN} , n is the estimated converter efficiency, F_{SW} is the converter switching frequency, and ΔV_{IN} represents the allowable input voltage ripple.

It should be noted that the input voltage ripple reaches the maximum value for a single phase converter at 50% duty cycle.

Output Capacitor Selection

The output capacitor of a switching regulator is a critical part of overall output performance. The inductor and the output capacitor form a lowpass filter. Additionally, the value of the output capacitor can greatly affect the converter's output transient response and the loop bandwidth.

The first step in determining the value of the output capacitor is to define the nature of the load. This also ties into the selection of the inductor as well. Basically, the change in the inductor's current is defined as di/dt = $\Delta V/L$.

So, for example, with a 12-V input and 5-V output using a 1- μ H inductor, the maximum rate of current change at 100% duty cycle would be 7 A/ μ s as seen in Fig. 3. What does this mean? Basically, if the load-step slew rate is greater than 7 A/ μ s, then more output capacitance is needed to provide the necessary response to a transient load step. The other critical piece of information needed is the maximum allowable output-voltage change. Using the same example from above, we can take this a little further.

Fig. 3. Diagram of inductor slew rate.

© 2015 How2Power. All rights reserved.

Calculate the maximum allowable output impedance, given the following requirements:

- $V_{IN} = 12 V, V_{OUT} = 5 V,$
- Output current step 0.5 A to 2.5 A ($\Delta I = 2 A$),
- Maximum output voltage deviation = 50 mV and
- 20 A/µs slew rate.

Required capacitance impedance = 50 mV/2 A = 25 m Ω . This means that the ESR of the output capacitor has to be 25 m Ω or less.

Using the equations for C_{OUT} from the MAX17504 datasheet, we see that:

 $C_{OUT} = 0.5 \times I \text{ step} \times t_{response} / \Delta V_{OUT}$

where, $t_{response} \approx (0.33/f_c + 1/f_{sw})$; f_c is the targeted closed-loop crossover frequency.

It is important to note that most regulator datasheets provide all the equations needed to help the designer calculate and select the input and output capacitors.

Part Selection And Simulation Design

Suppose that company X is designing a high-performance RF front-end that has a very wide operating frequency range. The input voltage varies from 20 V to 35 V and the circuit requires 3.3 V at 2 A and 5 V at 2.5 A. The RF signal chain has very sensitive low-noise circuits, and the designer wants to control the placement of the power-supply switching harmonics by applying an external clock to both regulators. In this way the switching frequencies are identical and in phase with each other.

Beat frequencies can be generated by converters not synchronized to the same clock. The beat frequencies and converter switching harmonics may fall within the operating range of the equipment and are very hard to eliminate.

Step 1: Search For The Regulator

Use the parametric search tool from the suppliers' web site to narrow the regulator selection (Fig. 4.)

Hide Controls Total Parts: 309 Matching Parts: 2	min	Vm (V) max	Vo (N min	(11) () () () ()	Preset V (V)	out Output Adjust. Method	loum (max) (A)	lourn (max) (A)	Switch Type	Synchronous Switching	Power Good Signal	Icc (mA) max	DC-DC Outputs	Oper Freq (kHz	r. Features))	Design Tools	Industry Qualified	Oper, Temp. (°C)	Package/Pins
Current Selections		≥ 38	14	÷			≥ 2.5	≤ 120	= Internal	= Yes	- 20	- 23	- 1	- 52	= External Sync.	1943	040	2	12
Clear All Selections	1	Clear					Clear	Clear	Clear	Clear			Clear		Clear				
Parametric Selection Controls	45	60 36	0.9	54	015 017 0105 011 0125 0123 0123 0123 0135	Cripital/MD Dyn. REF In Preset Resistor	120 3.5 0.075	25	□External ØInternal	₩ Yes	□Yes	1.8		6000 2200	Adjustable Freq, Adjustable Freq, Adjustable Freq Current Mode Control Current limit CountAdds Phase Edemai Sync, Frixed Freq./PWM Output CVP Output UVP Reset Output	DEE- Sim	Actomotive AECQ100 MIL-STD- 6838	- 40 to +05 -40 to +105 -40 to +125 0 to +70 0 to +70 0 to +85	
Hidden Columns: 16 (Default)	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide	Hide
Compare Sort by: Part Number:	44	**	¥4	A.4	A ₹	ΨÅ	A 7	**	4.4	**	47			Δ.Δ	.∆. ♥ Adjustable Freq.	A ¥	**	¥4	₩ ₩
MAX17504 60V. 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation	4.5	60	0.9	54	*	Resistor	3.5	3.5	Internal	Yes	Yes	1.8	1	2200	Current Limit External Sync. Fixed Freq./PWM Output UVP Reset Output	EE-Sm		-40 to +125	TOFN20
MAX17503 60V, 2.5A, High Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation	4.5	60	0.9	54	2	Resistor	2.5	25	Internal	Yes	Yes	1.8	,	2200	Adjustable Freq Current Limit External Sync Fixed Freq./PWM Output UVP Reset Output	EE-Sm		-40 to +125	TOFN29
Didn't find what you need?	No	vles; ·	This pri	cing is	BUDGETAP	RY, for comparing si	nilar pa volume	rts, Prio	es are in U.S and version	dollars and sub specific prices a	ject to ch nd deliver	ange. G y. plea	Quantity p se see the	icing n Porice (ray vary substantially and internat and availability page or contact an	onal price authorize	s may differ due d distributor.	to local duties, tai	es. fees. and exchang

Fig. 4. Start the regulator search with the supplier's parametric search tables. This is an example of the search on the Maxim Integrated website.

Use the following parameters:

- V_{INMAX} to > 38 V,
- I_{OUT} > 2.5 A and
- Synchronous switching = yes.

Now switch the type box to Internal and then check the External Sync box. Two suitable parts are found. For this design the MAX17503 is chosen. Note that the MAX17504 could also be used at the expense of an inductor with a higher current saturation rating.

Checking both data sheets, the peak-switch current limit of the MAX17504 is typically 5.1 A versus 3.5 A for the MAX17503. In general, the saturation rating of the inductor must be higher than the switch current limit. So for this example, the MAX17503 may allow for a physically smaller size inductor. The internal switch current limit is usually not found on parametric search tools, so one must inspect the data sheet to determine this value.

Step 2: Simulate The Design

After careful consideration based on application requirements, the appropriate converter is chosen. The next step is to choose the surrounding components such as the power inductors, input and output capacitor, and feedback resistors used to set the output voltage and component values for the compensation network. A convenient EE-SIM tool (Fig. 5)^[6] is a free power-supply design aid that gives both novice and experienced power-supply engineers a convenient way to design and optimize a regulator's transient response and loop stability.

M. Designs Design I	Donuloomonto	Cohomatia	Anohusia	Camplete Vaur Deeler	Downland Decisions	
My Designs Design i	Requirements	Schematic	Analysis	Complete Your Design	Download Designs	
Part Number: MAX1750	3					
Design Name: Not Save	bd					
Enter your design requirement	nts and click Cre	ate Design to g	jenerate an i	nteractive schematic and bi	Il of materials.	
Input Requirements						
Maximum Input Voltage	35		V			
Minimum Input Voltage						
Typical Input Voltage	24		V			
Input Undervoltage Lockout I	evel 4.5		V			
Input Ripple Voltage	0.5		V			
Switching Frequency						
Soft-start time						
Feature						
Mode of Operation PWM V	•					
Output Requirements						
Output Voltage	5		V			
Load Current	2.5					
Transient Output Ripple Volta	age 0.15		V			

Fig. 5. Enter the design requirement parameters.

Click the EE-Sim simulation tool and enter the application parameters. Then click the Create Design box, which will provide the circuit diagram seen below (Fig. 6) where the inductor, capacitor, and resistor values are automatically chosen.

It is important to note that when choosing input/output capacitor values, take a close look at the V_{BIAS} -versuscapacitance curve as the actual capacitance could decrease depending on the applied voltages. The capacitance values can be manually changed in EE-SIM to reflect the actual capacitance. This topic is covered extensively in Tutorial 5527.^[5]

Fig. 6. Solution schematic.

By clicking on the Analyze box, EE-SIM provides the option to do a steady-state, transient, or ac analysis. A good start for the simulation would be to click the AC Analysis button and then the Run Analysis box (Fig. 7) to check for stability. The rule of thumb is to have at least 45 degrees of phase margin at unity gain.

Fig. 7. Configure the analysis type.

The bode plot below (Fig. 8) shows that the phase margin at unity gain is 66.59 degrees at a crossover frequency of 52.2 kHz.

Fig. 8. Bode plot for measuring loop stability. © 2015 How2Power. All rights reserved.

Next we can look in the time domain to see how the output responds to a change in load current. Click on the Transient Analysis button. You can then select the voltage and current waveforms and use the Marquis Zoom to measure the output voltage deviation (Fig. 9.) In this example for a 1.25-A load step, the output dips down to 4.85 V and, when the load step is released, the voltage jumps to a peak of 5.135 V.

Fig. 9. Transient response simulation.

It should be noted, finally, that there are many other waveforms available for view from the simulation. Simply select the various signals in the output box to the right.

Conclusion

Hopefully, this article has provided a useful starting demonstration for engineers involved in selecting dc-dc regulators.

As power management is a vast topic, there have been thousands of papers written that examine various levels of detail. Additional advice on proper selection of inductors, input capacitors, and other components can be found in various application notes and product data sheets. The references below will prove useful for those wishing to expand their knowledge in power supply design.

References

- 1. "<u>Estimate Inductor Losses Easily in Power Supply Designs</u>," by Travis Eichhorn, *Power Electronics Technology* (April 2005).
- 2. Vishay Inductor Loss Calculation Tool.
- 3. Coilcraft Inductor Value Tool.
- 4. <u>Coilcraft Power Loss Tool</u>.
- 5. "<u>Temperature and Voltage Variation of Ceramic Capacitors, or Why Your 4.7µF Capacitor Becomes a</u> .33µF Capacitor," by Mark Fortunato, Maxim Integrated tutorial 5527.
- 6. "<u>EE-SIM Users Manual</u>," Maxim Integrated User Guide 5861, March 2014.

About The Author

Don Corey joined Maxim Integrated in 2006 and is a Principal Member of Technical Staff, Field Applications. He has over 30 years of analog electronic design experience. He got his BSEE from Central New England College.

For further reading on board-level dc-dc converter design, see the How2Power Design Guide, select the <u>Advanced Search</u> option, go to Search by Design Guide Category and select "Buck Converters" in the Popular Topics category. Or for more information about boost or buck-boost converters, select these terms in the Topology category.