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PMBus Gives Designers New Options For Meeting Adaptive Voltage Scaling 
Requirements 

by Peter James Miller, Texas Instruments, Manchester, N.H. 

While adaptive voltage scaling (AVS) has been around for more than two decades, it has severely limited a 

designer’s choice of power solutions. Today, an emerging, open-source serial communications protocol known 
as PMBus is opening new possibilities for flexibility in power design. In this article, we’ll look at how PMBus can 

enable digital system and power designers to realize their AVS power needs.  

What Is AVS? 

Adaptive voltage scaling is a method by which a powered device is able to communicate with its power supply 
to control or “adapt” the voltage provided by the power supply to the needs of the powered device. As 

processor designers search for new ways to deliver value to their customers, an increasing variety of devices 

are offering AVS capabilities, demanding high-performance AVS power solutions.  

AVS was once the domain of high-end CPU core processors that needed to reduce power dissipation to avoid 

overheating. Today, however, AVS is pervasive through most digital processors and their support chipsets.  

Adapting their supply voltage allows these devices to improve performance or reduce power consumption. 
However, most AVS solutions require specific power supply controllers designed to support their specific form of 

AVS communication. 

Since the processor and power solution must offer compatible AVS communication, frequently designers are 
restricted in their choice of power solutions. These solutions must be specially designed to work with their 

processor’s form of AVS, or use a custom bridge device to interface between the power supply and processor. 

This often means lower volume and higher-priced power solutions dedicated to powering specific processors.  

However, now system designers are presented with a new choice. PMBus-enabled power supplies provide a 

standard interface that allows their output voltage to be digitally controlled. PMBus power supplies allow system 

designers to implement their own AVS bridge. In some cases, designers could use direct digital communication 

between their processor and its power supply to meet their AVS needs.  

What Is Power Management Bus? 

A power management bus, or PMBus, is an open-standard, multi-point-compatible, serial communication 

protocol that uses defined-register addresses and formats to simplify and standardize communication between 
power management devices. Built on the foundation of system management bus (SMBus) using a physical and 

network layer compatible with the I2C two-wire serial communication standard, most digital processors and 

controllers can serve as a PMBus host and control a PMBus power solution using I2C-based drivers in a simple 
point-to-point configuration. 

The register address and data formats of common power management-related information and functions used 

in PMBus are defined by the PMBus standard.[1] These defined-register addresses are commonly called 

“commands” within PMBus with their “command codes” being the equivalent of their I2C register address. 

The basics of implementing AVS through PMBus require understanding the basic transaction structure used by 

PMBus and a few standard PMBus commands. However, once a digital designer takes the step of implementing 

PMBus, they can open a wealth of options provided by the digital communication between a digital processor 
and its power supply. This enables configuration, control and monitoring of the power solution. 

Like I2C, PMBus is a variable-length packet of 8-bit data bytes, each with their own receiver-acknowledge, 

wrapped between a start and stop bit. The first byte is always a 7-bit “slave address” followed by a 0 “write 
bit.” Sometimes this is called the “even address” that identifies the intended receiver of the packet. The second 

byte is an 8-bit “command” byte that identifies the PMBus command being transmitted using that command’s 

command code. After the command byte, the transmitter either sends data associated with the command to 
write to the receiver’s command register, from lowest to highest byte, or sends a new start bit. This indicates 
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the desire to read the data associated with the command register from the receiver, after which the receiver 

transmits the data following the same lowest-byte first format. 

 

Address + Wr Command DATA Low-Byte DATA High-Byte

DATA

CLK

Idle

“Start Transmission”

 when DATA 

transitions 1 to 0 while 

CLK is 1

“Stop Transmission”

 when DATA 

transitions 0 to 1 while 

CLK is 1

Minimum 4.7ms “Idle” 

after STOP

Receiver Holds DATA 

low to ACK received 

byte

0 Bit for Write (Also 

called “Even 

Address”)

Low Byte is sent first High-byte is sent 

second (If used)

PMBus Write Word (2-byte) Transaction  
 

Fig. 1. PMBus timing diagram of a write word transaction shows the start and stop bits, packet 
contents, data byte order, and receiver acknowledgements. 

Implementing AVS With PMBus 

The PMBus protocol contains two standard methods for implementing the output voltage control required for 
AVS. The first uses the basic 100-kHz to 1.0-MHz I2C-derived physical and transport layers with command code 

21h (VOUT_COMMAND) to actively set the output voltage. The second uses a 5- to 50-MHz serial interface 

introduced as an option in PMBus Revision 1.3 Part III, called AVSBus. AVSBus provides a royalty-free, open 
standard, serial communications protocol at up to 50 MHz for AVS solutions requiring lower latency than can be 

achieved through the 100-kHz to 1-MHz standard PMBus protocol. While AVSBus will be covered in future 

articles, this article focuses on using the base PMBus protocol, and specifically the standard VOUT_COMMAND 

implementation. 

AVS solutions using the basic PMBus protocol typically use three PMBus commands:  

1. VOUT_MODE (20h), which establishes the format used for output voltage related commands; 

2. VOUT_TRANSITION_RATE (27h), which sets the slew rate of the power supply’s output when changing 
its output voltage; and  

3. VOUT_COMMAND (21h), which provides a 16-bit word setting the target output voltage based on the 

format established in VOUT_MODE. 

VOUT_MODE 

PMBus supports four output-voltage formats: linear, VID, direct and IEEE half-precision floating point, plus a 5-

bit parameter. In linear format, the parameter sets the exponent used to scale the 16-bit mantissa in 

VOUT_COMMAND. In VID format, the parameter selects the VID encoding used by the 16-bit VOUT_COMMAND. 
Not all of the 32 available VID codes are used, and several “future use” and “manufacturer-specific” codes are 

already reserved.  

Direct format equally divides the 16 VOUT_COMMAND bits between the minimum and maximum allowed 
voltages to maximize the resolution within the range, but requires reading the COEFFICIENTS (30h) command. 

IEEE half-precision floating point splits the 16-bit VOUT_COMMAND into a sign-bit, 5-bit exponent and 10-bit 

mantissa, which contains all of the VOUT related information, but reduces the range and resolution to only 10-
bits. The most commonly used VOUT_MODE format for implementing AVS is linear mode. This allows the 

designer to use all 16-bits of VOUT_COMMAND to specify the desired output voltage, providing an exceptional 

combination of range and resolution.  
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VOUT_TRANSITION_RATE 

VOUT_TRANSITION_RATE sets the output-voltage slew rate used when the output voltage is changed though a 

PMBus command such as VOUT_COMMAND, in mV/µs. Before implementing an AVS solution using PMBus, a 
designer should know their processor’s slew-rate requirements and their power supply’s slew-rate capabilities, 

then set the VOUT_TRANSITION_RATE of the power supply as needed. 

VOUT_COMMAND 

VOUT_COMMAND sets the output voltage based on the format defined in VOUT_MODE. This 16-bit word is the 
heart of implementing AVS via PMBus. VOUT_COMMAND sets the absolute output-voltage level, in volts, as 

measured by the power supply. This could be translated from a parallel VID code, or using a direct or linear 

format as set by VOUT_MODE.  

When implementing open-loop AVS solutions that command a target output voltage, VOUT_COMMAND can be 

directly written. However, when implementing closed-loop AVS solutions that monitor and adjust the power 

supply voltage based on the current power supply voltage’s performance, be sure to read the current 
VOUT_COMMAND value before making adjustments to ensure the designer makes only the intended step in 

output voltage. 

AVS process with PMBus VOUT_COMMAND 

In general, the AVS process follows these command steps: 

1. Read VOUT_MODE to confirm the data format used by the power supply. 

a. Write VOUT_MODE, if applicable. 

2. Read VOUT_TRANSITION_RATE to check the slew rate the power supply will support. 

a. Write VOUT_TRANSITION_RATE, if applicable.  

3. Read VOUT_COMMAND to confirm that the current output-voltage programming matches the expected 

VOUT_COMMAND, especially in closed-loop dynamic AVS solutions. 

4. Write VOUT_COMMAND to change the voltage generated by the power supply. 

For example, when using a power supply at PMBus address of 14h or 36d (001 0100b) that supports the linear 

data format with exponent –9, set the output voltage equal to 1.100 V as follows. 

1. Read VOUT_MODE which contains the bytes:  

a. start-bit, signifies the start of a new transaction packet 

b. 28h (slave address 14h + 0 write bit)  

c. 20h (VOUT_MODE command code) 

d. second start-bit, signifies this is a “READ” transaction packet 

e. 29h (slave address 14h + 1 read bit) 

f. slave writes back 17h (000 10111b ), indicates absolute linear-mode (000) and exponent = –9 (10111) 

g. stop-bit, signifies the end of the transaction 

 

2. Write VOUT_COMMAND = 1.100 V, which would contain the bytes: 

a. start-bit, signifies the start of a new transaction packet 
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b. 28h (slave’s address + 0 write bit) 

c. 21h (VOUT_COMMAND command code) 

d. 33h (the low-byte of the 563d mantissa for 1.100 V with exponent –9) 

e. 02h (the high-byte of the 563d mantissa for 1.100 V with exponent –9)  

f. stop-bit, signifies the end of the transaction 

After that command is received and acknowledged, the output voltage transitions to 1.0996 V at the slew rate 
defined by VOUT_TRANSITION_RATE. Once VOUT_MODE, VOUT_TRANSITION_RATE and the current 

VOUT_COMMAND are known, further AVS routines can be run with just the VOUT_COMMAND transmission. 

AVS With Manufacturer-Specific Output Control Commands 

Since the PMBus protocol standard does not require PMBus-compatible power solutions to implement all PMBus 
commands, or even every part of PMBus commands they support, it may be desirable to implement AVS using 

manufacturer-specific PMBus commands.  

For example, the TPS544C20[2] does not implement VOUT_COMMAND, but allows relative adjustment of the 
output voltage by using the MFR_SPECIFIC_04 (command code D4h), called VREF_TRIM. This two-byte word 

provides the user with the ability to adjust the output voltage from +10% to –20% of the initial output voltage 

using a least significant bit (LSB) of 0.33%. Translating an AVS voltage over this range can require some initial 
design effort, but allows a designer to implement an AVS solution when VOUT_COMMAND is not available.  

For example, using a 10-kΩ and 15-kΩ feedback divider with the TPS544C20’s fixed 0.6-V reference, the initial 

voltage is programmed to 1.0 V (Fig. 2.) A programmable output-voltage range of 0.8 V to 1.1 V with a 3.3-mV 

resolution is set by a 16-bit signed register from –3Ch to +1Eh (–60d to +30d). 

 

 
 

Fig. 2. Block diagram and PMBus connections for an AVS via PMBus power solution for a 

TCI6636K2H Multicore DSP+ARM KeyStone II System-on-Chip using a TPS544C20-integrated FET 
power converter. 

The write process here is similar to writing VOUT_COMMAND, except the meaning of the bits has changed 
slightly. Instead of representing the absolute voltage as they did in VOUT_COMMAND, they now represent a 

signed voltage change from the initial boot voltage of 1.0 V. While this can be more complicated than using 

VOUT_COMMAND, it is generally easier to establish a first time power-up voltage without communicating with 
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the power supply via the PMBus. This is a valuable feature when the PMBus communication is controlled by the 

powered device. 

Since manufacturer-specific commands like VREF_TRIM can vary from manufacturer to manufacturer or even 
device to device, designers should read a device-identifying register such as DEVICE_ID (command code ADh) 

or DEVICE_CODE (command code FCh using the TPS544C20) to confirm the power supply is using the correct 

device prior to issuing a MFR_SPECIFIC command. 

For example, using a TPS544C20 at PMBus address 14h or 36d (001 0100b) with a 10-kΩ and 15-kΩ feedback 

divider, a user wants to set the output voltage equal to 1.050 V. 

 

1. Read DEVICE_CODE which contains the bytes:  

a. start-bit, signifies the start of a new transaction packet 

b. 28h (slave address 14h + 0 write bit)  

c. FCh (DEVICE_CODE command code) 

d. second start-bit, signifies this is a “READ” transaction packet 

e. 29h (slave address 14h + 1 read bit) 

f. TPS544C20 would write back 53h, the low-byte of its device code 

g. followed by 01, the high-byte of its device code  

h. stop-bit, signifies the end of the transaction 

 

2. Write VREF_TRIM = +5% (= 50 mV for VOUT = 1.05 V), which contains the bytes 

a. start-bit, signifies the start of a new transaction packet 

b. 28h (slave’s address + 0 write bit) 

c. D4h (MFR_SPECIFIC_04 command code for VREF_TRIM on the TPS544C20) 

d. 0Fh (low-byte of the 15d mantissa 0 for +5% w/0.33% LSB) 

e. 00h (high-byte of the 15d mantissa for +5% w/0.33% LSB) 

f. stop-bit, signifies the end of the transaction 

 

This process can then be repeated to continually adjust the output voltage as needed by the processor. Since 

the VREF_TRIM = 0, output voltage is programmed to 1.00 V, and the LSB is 3.33 mV. The process of 
calculating the required VREF_TRIM value is: 

VREF_TRIM = (VOUT – 1.000 V) / 3.33 mV  (1) 

The combination of standard PMBus commands, like VOUT_COMMAND and manufacturer-specific commands 
like VREF_TRIM, provide system designers with flexibility to adapt their power solutions to their specific needs 

and system requirements. 

Now that we’ve established the basics of how to implement an AVS solution using the PMBus communications 
protocol, both with the standard VOUT_MODE and VOUT_COMMAND commands and using manufacturer-specific 

http://www.how2power.com/newsletters/


 

 

Exclusive Technology Feature 

 
 

 © 2015 How2Power. All rights reserved. Page 6 of 6 

 

implementations like VREF_TRIM in the TPS544C20, we’ll build on this knowledge in the coming months. In 

another article, we’ll look at sharing the PMBus among multiple processors and power supplies. We will use a 

PMBus host as an AVS bridge and a common interrupt so that multiple processors can share a common PMBus 
channel so each can talk to their own power supply. 
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For further reading on board-level power management, see the How2Power Design Guide’s Advanced Search 
page, go to Search by Design Guide Category and select “Board-level Power Management” in the Design Area 

category.  
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