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Simulation Demonstrates Impact Of Current - Loop Crossover Frequency On 

Stability  

by Christophe Basso, ON Semiconductor, Toulouse, France  

Switching converters operating i n current -mode control have been the subject of many debates regarding the 

modeling of the current loop and the modulator gain in particular. Without reopening the discussion here, this 
article modestly sheds some light on how too high a current - loop cross over frequency can impact the converter 

stability. Many engineers mistakenly believe that the subharmonic oscillations that occur at half the switching 

frequency in the voltage loop are caused by a peak in the current loop response at this frequency. In re ality, 
the instability observed as a peak in the voltage loop at F sw /2 is simply due to a poor phase margin in the 

current loop (caused by a pair of right -half pla ne zeros) not because of a peak there.   

While this phenomenon  was analyzed and explained many  years ago through modeling of current -mode control, 
it can be difficult to find experimental results that demonstrate the underlying relationships between power 

supply crossover frequency, phase margin and the resulting instability. Although  you  do not  need to measure 

the inner current loop when designing a current -mode -controlled converter, it is important to understand the 
phenomenon at play here. This article presents circuit models in S PICE and SIMPLIS that engineers  can use 

specifically  to simulate these  effects .  

This article begins by reviewing  how current -mode controlled converters are susceptible to instability for duty 

ratios above 50% and how subtracting an artificial ramp from the current set point dampens the oscillations 
that occur with these hig her duty cycles. These concepts are explained conceptually by applying perturbations 

to the inductor current waveforms and with some simple equations that explain how these perturbations die out 

or grow, depending on the duty ratio and the presence of the compensating current ramp. In the case, where 
the perturbations grow and are not damped, the previously mentioned subharmonic oscillations occur.  

After explaining the instability and use of ramp compensation conceptually, a  SIMPLIS model of a special test 

circuit is presented that enables simulation of the inductor current perturbations. This model can be used to 
visualize the effect of the duty ratio and the ramp compensation on the inductor current perturbations.    

This SIMPLIS model not only demonstrates  how the inductor current perturbations either grow or diminis h over 

several switching cycles , it also demonstrates the sampling effect that Ridley first explained years ago in his 
seminal paper on the continuous - time model for current -model controlled  converters. From this model, a 

sampled -data ( z-domain) expression for the control voltage - to - inductor peak current response can  be derived , 

which is then shown to confirm the duty ratio condition that governs converter stability.  

The next section goes int o detail on how this expression can be translated to the s -domain for plotting the    

control voltage - to - inductor peak current response, and observing the right -half -plane zeroes that are 

responsible for the aforementioned subharmonic oscillations. This se ction delves further into Ridleyôs model and 

related work.  

All of this leads up to the presentation of a S PICE model  version of Ridleyôs ac model for predicting the 

subharmonic oscillations in current -mode -controlled converters . This model is used to demon strate the impact 

of varying amounts of compensating current ramp on converter stability. Specifically, itôs used to simulate the 
impact of the compensating ramp on the crossover frequency on the control voltage - to - inductor peak current 

response and phase margin.  This step is needed to analyze the current loop and then write its  transfer function 

using Laplace equations.   

In the last section,  simulation is taken a step further  as a SIMPLIS  model is presented that models the response 

of the current loop as a  function of duty ratio and peak inductor current.  This is essentially a simulation of 

Ridleyôs model, which has been verified previously through analysis and experimental results, but not  through a 
simulation.  This step  also  is used to confirm the correct ness of the equations found using SPICE.  

http://www.how2power.com/newsletters/2101/index.html
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Perturbing A Current - Mode Converter  

If you perturb the inductor current of an uncompensated current -mode -controlled converter operated in 

continuous conduction mode (CCM), the disturbance dies out after a few switch ing cycles for duty ratios less 

than 50%. But bring the duty ratio beyond 50% and the same perturbation will grow  exponentially, 
engendering an instability of frequency equal to half of the switching frequency: this is a subharmonic 

oscillatio n. A simple d rawing shown in Fig. 1 graphically illustrates th is fact for the two duty ratios.  
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Fig. 1. The inductor current perturbation either dies  out after a few switching cycles or grows  

exponentially depending on the duty ratio value . 

In these graphs, the conver ter imposes a peak current setpoint via the control voltage Vc and the sense 

resistance Ri. The clock starts the switching cycle and turns the power switch on. The inductor current ramps up 

and reaches the setpoint at which the switch turns off.  

Should yo u make a change in the control voltage Vc, the event at which the change is acknowledged is not the 

clock but the point at which the switch turns off. It is important to realize this fact before proceeding further. In 

the upper section of Fig . 1 , the initi al inductor current s tep (the orange waveform) propagates and disappears 
after a few cycles. Then  as you increase the duty ratio, the damping reduces until the current waveform 

becomes unstable when the 50% threshold is crossed as depicted in the lower gra ph in Fig. 1.  

Please note that this behavior occurs whether the voltage regulation loop is open or closed. A typical example, 

beside s a true current -mode switching cell, is a voltage -mode converter featuring a maximum current limit: 
when it trips in some f ault conditions,  you can also observe these sub harmonic oscillations before the converter 

resumes operation  once the fault is gone.   

Based on simple geometry , [1]  it is possible to show that the perturbation in  Fig. 1 propagate s according to the 
following expression :  
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  (1)  

where n is the number of cycles.  
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These oscillations naturally disappear if the ratio inside the brackets keeps below 1 which is ensured for a duty 
ratio D less than 50%. However, we want to operate across a wide range of duty ratios and, as we approach 

the 50% threshold, oscillations will grow in amplitude, potentially inducing undesirable instabilities.  

A known cure to damp these oscillations for a duty ratio up to 100% consists of linearly reducing the setpoint  

value along the switching cycle. This is obtained by subtracting an artificial voltage ramp Se from the control 

voltage Vc. When divided by Ri it gives a current slope '

eS expressed in A/s. Fig. 2 illustrates the principle in which 

Sn and Sf respectively designate the up and downslopes of the inductor current  also expressed in A/s.  
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Fig. 2. Subtracting a ramp from the current  setpoint helps  suppress  subharmonic oscillations.   

As one can observe in Fig. 2, the effect ive peak current is  now reduced  as if we had  artificially increased the 

sense resistance Ri. Now accounting for the compensating  ramp ôs presence, we can graphically determine how 

the perturbation propagates cycle by cycle using the following  formula:  
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    (2)  

 

To ensure proper compensation up to a 100% duty ratio, you must inject a certain percentage of the inductor 

downslope Sf, again for keeping the ratio between brackets below unity. This is obtained for  

' 50%e fS S> Ö     (3)  

Please not e that the recommendation is formulated considering a 100% duty ratio excursion. In a practical 

application, as the duty ratio rarely hits this extreme value, a smaller amount will ensure that you are not over -

compensating the converter.   

Visualizing The P erturbation  

To illustrate the presence of a propagating perturbation, I have built a simulation template in SIMPLIS where 

two open - loop 100 -kHz buck converters are perfectly synchronized by a common clock ( Fig. 3 ). One delivers a 

certain amount of power wi th fixed operating conditions while the second will undergo a small input voltage 
change at a given point in time.  
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Note that these converters operate in open - loop conditions for the voltage regulation part but are working in 
closed  loop for the inductor c urrent. The setpoint voltage is fixed at 545 mV and imposes an inductor peak 

current of 5.45 A.   

At the beginning of the simulation, inductor currents are similar and subtracting them leads to zero. Then, when 
the input voltage suddenly increases from 15 V  to 25 V for the left -side converter, inductor current I L1 deviates 

from its original position and an error appears. By displaying the subtraction of both inductor currents along a 

few switching cycles via controlled sources G5 and G6, we can see in Fig. 4  how the error propagates and 
eventually disappears in this particular situation  due to the compensation .   
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Fig. 3. Two converter s are operated from the same clock  but  one of them sees its input voltage 

deviate at a given moment.   
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Fig. 4. The inductor  current perturbation dies out after a few switching cycles or  grows  

exponentially depending on the duty ratio value  and whether or not there is compensation . In 

this case, the Fig. 3 circuit weôre simulating is running with a duty cycle below 50%, but it also 
has the compensating ramp that allows for higher duty cycles.  
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Observing the blue waveform in Fig. 4 reveals a familiar shape which looks like the output of a sample -and -hold 
circuit where the system acquires the inductor current at the moment the swit ch turns off (target is reached) 

and holds it until the next sampling instant.  

The step indicates a current difference at the perturbation point which eventually disappears after a few cycles. 
It is possible to isolate the inductor current error and plot i t separately as Fig. 5  shows. As detailed by Ray 

Ridley in his thesis , [2]  the transition from one sample to the other is not instantaneous. However, for the sake of 

simplicity, an immediate jump is assumed as represented in the lower portion of the figure.  It is now possible to 
express the law linking each sample together by rewriting the expression given in  equation (2) .  
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Fig. 5. The current perturbation representation is that of a sampling system.  

First, by looking at the upper blue curve in Fig. 1 and r ealizing that () ( )0L L swI I T=  at equilibrium, we can state:  

( )1f sw n swS D T S DT- =     (4)  

Rearranging leads to :  

1 ' n

f

SD D

D D S

-
= =     (5)  

Then, substituting equation (5) into (2) and reformatting the expression leads to the differenc e equation we 

want:  

[ ] []Ĕ Ĕ1L Li n i na+ =- Ö     (6) 

with  

'

'

f e

n e

S S

S S
a

-
=

+
    (7)  

Equation (6) describes  how a perturbation occurring in the inductor current propagates cycle by cycle. To 

illustrate this phenomenon, we have kept the control volt age to a constant value (zero in ac) and we varied the 

input voltage for a small amount of time. What we observed is the natural response  of the converter rn( t ) 
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obtained with a zeroed stimulus, Vc. Since we are interested in  the control - to - inductor current  transfer function, 

otherwise stated  as the loop gain linking the control voltage vc (the stimulus) to the inductor current iL (the 

response), we need the total  response  y ( t )  made of the natural and forced  responses:  

() () ()n fy t r t r t= +    (8)  

The force d response is obtained by keeping the input voltage constant but this time stepping the stimulus vc. 

The results are shown in  Fig. 6  for a 5 -mV step in vc. There is an immediate deviation when the event occurs 

followed by a propagation pattern described by  equation (6) . In the end, you can clearly see the 50 -mA offset 

now created on the inductor current since we have increased the setpoint by 5 mV ( Ri = 100 mÝ). As expected 

for a duty ratio less than 50%, the perturbation fades away after several switching cycles.  
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Fig. 6. In this mode, the control voltage is stepped while the input voltage remains constant.  

Following reference [2], the diagram in Fig . 7 appears and can also be described with a difference equation as 

we previously did:  
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Fig. 7. This time the control voltage v c is stepped and the perturbation propagation is analyzed.  
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[ ] ( ) [ ]
1Ĕ Ĕ1 1 1L c
i

i n v n
R

a+ = + Ö +   (9)  

This equation predicts the peak indu ctor current deviation îL at the sampling instant when the control voltage vc 
is stepped while equation (6) describes how  the perturbation propagates. According to  equation (8) , we can 

now combine the two responses proposed in  equations (6) and (9),  then w rite the complete or total discretized  

response:  

[ ] [] ( ) [ ]
1Ĕ Ĕ Ĕ1 1 1L L c
i

i n i n v n
R

a a+ =- Ö + + Ö +   (10)  

We can rearrange and group terms as follows:  

[] [ ] ( ) [ ]
1Ĕ Ĕ Ĕ1 1 1L L c
i

i n i n v n
R

a aÖ + + = + Ö +   (11)  

Involving the z- transform, we have:  

()( ) () ( )
1Ĕ Ĕ 1L c
i

i z z v z z
R

a aÖ + = + Ö   (12)  

This is it! From this eq uation, we can define the sampled -data expression linking the control voltage to the 
inductor peak current:  

()

()
( )

Ĕ 1
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c i

i z z

v z R z
a
a

= + Ö
+

    (13)  

This formula is also found in reference [3] but there itôs derived without splitting the two responses. Because I  
believe it is important to understand the origins of this transfer function, the appendix at the end of the article 

shows how to determine it step by step with a colored graph for improved clarity.  

The expression in  (13)  contains a pole located at pz a=-. To ensure stability, this p ole must remain inside the 

unit  circle as illustrated in Fig. 8.  
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Fig. 8. The stable region lies inside the unit  circle in the z-domain.  

Therefore , to make sure the pole remains within the circle, we need to satisfy the following inequality:  

1a<      (14)  
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This condition is respected provided that f nS S< . Applying the definition for the inductor slopes during the on -  

and off - times of a buck converter, we can update t his expression as:  

out in outV V V

L L

-
<     (15)  

Knowing that for a CCM -operated ideal buck converter out inV DV= , we can update equation (15) to finally reach 

a similar conclusion as before to avoid instability:  

     
1

2
D<     (16)  

Loop Gain And Frequency Response  

The expression from equation (13) represents a signal discretized in the z-domain and, as such, is not ideal to 

study the loop to further plot its frequency response. This formula describes the samp ling of the inductor 

current when its value meets the setpoint and the hold of the acquired value until the next sampling instant. It 
is possible to represent this chain of operations with an equivalent simplified circuit as illustrated in Fig. 9.  
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Fig. 9 . The circuit illustrating the inductor peak current setpoint process involves a sample -and -

hold equivalent model.  

We can convert our discretized expression in equation (13) into the sampled -Laplace domain by replacing z by 

its definition ssT
e . However, we need to account for the holding effect equivalent of going through a digital - to -

analog converter (DAC) which, practically speaking, links the sampled -  and continuous -Laplace domains. In that 

case, the newly converted expression needs  to be supplemented by the transfer function of a zero -order hold 

(ZOH) which reconstructs a continuous - time function from a sampled sequence x [ n]: [4]  

ZOH

1
( )

ssT

s

e
H s

sT

-
-

=    (17)  

The frequency response of this ZOH can be studied with a mathematical s olver such as Mathcad or via a 
SIMPLIS switching circuit. Both methods reveal a similar response to that  shown in Fig. 10.  
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Fig. 10. SIMPLIS can quickly deliver the frequency response of a sample -and -hold circuit.  

The dashed blue line represents a simpli fied first -order low -pass response as a reference with a pole located at 

sF p. If it predicts the magnitude well for the low - frequency portion, the phase quickly deviates from the 

complete response as frequency increases. The complete  expression in the Laplace domain can now be defined 

as follows:  

()
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()
( ) ( )

Ĕ 1 1 1 1 1
1 1

Ĕ

s s s

s s

sT sT sT
L

sT sT
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i s e e e
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a a

a a

-
- -

= = + = +
+ +

 (18)  

At this point, we could replace ssT
e by its second -order Padé approximant and this is  what has been adopted in 

reference [5]. However,  Ray Ridley in his thesis took a different path. His idea was to construct a model of the 

current -mode converter in which a block He(s) models the sampling effects. As shown in Fig. 11, he placed this 

block after the sense resistor Ri rather than in the forwar d path as adopted by other authors. This choice has 

been commented on by Dennis Feucht in his series of articles on a unified current -model and the reader is 

invited to discover his work in reference [6].  

Since we already know the closed - loop expression o f the control - to - inductor peak current expression 

determined in  equation (13) , we can express the closed - loop relationship characterizing the model of Fig. 11  
and work backwards to determine what transfer function He satisfies this closed - loop expression.  
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Fig. 11. The sampling effect is placed in the loop gain, after the sense resistor Ri. 

To carry on with this analysis, we can transform the model of Fig. 11 into the block -diagram represented in Fig. 

12 in which coefficients k (effects of input and ou tput voltages, see reference [2] for more details) have been 

purposely reduced to zero as vc is the sole stimulus here.  
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Fig. 12. The current loop appears clearly as an inner loop in this intermediate model.  

The closed - loop transfer function of such an ar rangement is immediate and equal to:  

()

()

()

() ()

Ĕ

Ĕ 1

L m i

c m i e i

i s F F s

v s F F s H s R
=
+

   (19)  

In this expression, one can see a modulator block Fm , followed by another box, Fi, illustrating the duty - ratio - to -

inductor current continuous - time transfer function. Fm  designates the m odulator gain which has been the object 

of many debates among the technical community. Ray Ridley recently wrote a series of articles explaining why 

the results found by other authors differed from his . [7]   

Actually, we have shown in  Fig. 7  that the exter nal ramp Se was subtracted from the control voltage but the 

ramp could also be added to the inductor current sense information scaled by the sense resistor Ri. This is, by 
the way, the method adopted by many commercial integrated circuits used to control s witching power supplies. 

As illustrated in  Fig. 13 , both options lead to the exact same peak current setpoint.  
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Fig. 13. The external ramp can either be subtracted from the control voltag e (as shown on the 

left) or added to the current sense information  (as shown on the right) .  Here the drawing 

represents the current flowing in the main power switch.  

Based on the right -side modulator drawing in Fig. 13, it is intuitively  possible to recognize a structure s imilar to 

that of the naturally sampled pulse -widt h modulator found in voltage -mode control whose small -signal gain 

depends on the peak amplitude Vp of the artificial voltage ramp Se:  

()

()

1 1
PWM

err p e sw

D s
G

v s V S T
= = =         (20)  

In our case, the artificial voltage ramp Se is summed with the inductor current sig nal scaled by Ri, leading to a 

small - signal gain equal to:  

()

() ( )

1
m

c e n i sw

D s
F

V s S S R T
= =

+
         (21)  

The second block which requires our attention is Fi which links the duty ratio to the inductor current. To find its 

definition, we need to resort to the PWM switch small - signal model in vol tage -mode control described in  detail  

in reference [8] and the object of an APEC seminar I taught in 2013. [9]  Based on the equivalent circuit shown in 
Fig. 14 for a boost converter, the inductor current is obtained by dividin g the voltage across the inductor by its 

impedance.  
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Fig. 14. The small -signal model of the PWM switch helps in determining the relationship linking 

the control voltage to the inductor current. It is represented here in a boost converter.  

Considering ac -zeroed input and output voltages, the inductor current is immediate:  

      ()
()ap

L

V D s
I s

sL
=     (22)  

From which we deduce the transfer function we want:  

()

()
() apL

i

VI s
F s

D s sL
= =    (23)  

The static voltage Vap can be rewritten as an invariant com bination of voltages at terminals a, c and p:  

ap cpac
V VV

sL sL sL
= +     (24)  

We can identify the inductor current invariant  on-  and off - slopes in a PWM switch -based model as:  

ac

n

V
S

L
=     (25)  

and  

cp

f

V
S

L
=     (26)  

If we combine these two definitions in (24), we have:  
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+
=

    (27)  
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We can now determine the value of He(s) which satisfies the following equality:     
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1

1

s
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F F s e
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-
= +

+ +
 (28)  

Going through the math and simplifying leads to:  
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1s

s

e sT

sT
H s

e
=

-
    (29)  

This block placed after the sense resistor Ri models the sampled inductor current before entering the modulator 

box Fm . Such an expression, again, is impractical to use considering the presence of the exponential term. A 

possibility to simplify it consists of involving the second -order Padé approximant:  

2
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1
1

2 2 2

1
1

2 2 2

s
s ssT

s s

s s

e

s s

p w w

p w w

å õ å õ
+ +æ ö æ ö
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º

å õ å õ
- +æ ö æ ö
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   (30)   

If you substitute this expression into equation (29) and rearrange the whole thing, you have:  

()
2 2

1 1
2

e

s s n n

s s s s
H s

Qw p w w w

å õ å õ
º - + = + +æ ö æ ö

ç ÷ ç ÷
 (31)  

with  

2
Q

p
=-

    (32)  

and  

2

s

n

w
w =     (33)  

where  

2s sFw p=
 

designates the converter switching frequency. This expression (31)  describes a pair of right -half -plane zeroes 

(RHPZ) located at half of the switching freq uency. The plot in  Fig. 15  confirms this fact with a rising  magnitude 
as any zero should bring, but the phase drops rather than also going up as would normally happen with zero s 

located in the left half -plane.  
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Fig. 15. The sampling block response is tha t of a right -half -plane zero s pair.  

Considering The Current Loop  

Looking at all the data we now have, it is possible to assemble a complete SPICE model predicting the sub -
harmonic oscillation s. This is what is proposed in reference [2] but offered in a ne tlist form only. I have rebuilt 

the entire model as proposed in Fig. 16 using the large -signal voltage -mode PWM switch model to which a duty 

ratio modulator featuring the sampling block He is added.  

 
Fig. 16. T he Ridley ac model predicts sub harmonic osci llations through the added block He(s).  

Please note the presence of a negative resistance for realizing the sampling block transfer function . This 
subcircuit cannot transmit a dc component which unfortunately constrains the model to ac analyses only. If we  

run a simulation with and without compensation ramp, the classical control - to -output transfer function of the 

CCM buck operated in current -mode control appears in Fig. 17 with its subharmonic poles located at half the 
switching frequency.  
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Fig. 17. The  peaking located at 2swF  is quickly damped as external ramp is added.  

Adding some compensation ramp '

eS via parameter m c defined as  

'

1 e

c

n

S
m

S
= +    (34)  

damps the poles as expected ( m c = 1.5). We see  in the model that parameter m c does not affect the sampling 

block at all since all its elements La and Ca have fixed values depending on the switching frequency and the 

quality factor defined in  equation (32) . How does this added ramp tame the oscillation s then?  

We need to focus our attention on the inner loop characterized by the loop gain Ti(s) highlighted in  Fig. 12 . To 

determine this transfer function, we can first simplify the SPICE model from  Fig. 16 to determine this transfer 

function in an easy wa y: open the current loop after the modulating block X 3 and apply the stimulus to node D. 

Fig. 18 shows the modified circuit.  

 
Fig. 18. By opening the loop after the modulator Fm, we can observe the current - loop response.  
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The simulation results for variou s compensation levels m c are quickly obtained and they appear in Fig. 19. As 

you can see, injecting more ramp affects the magnitude but not the phase response of the current loop gain.  
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Fig. 19. SPICE gives us the response we expect from this simulation circuit.  

To symbolically derive this transfer function, we can build an intermediate simplified schematic such  as the one 

proposed in Fig. 20.  

 

Fig. 20. The current loop transfer function is determined using this equivalent circuit.  

The inductor current is immediately determined considering the modulated source D(s)Vin  driving the 

impedance made of the series connection of L1, rL and the impedance combining the output capacitor and the 

load:  
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2

1
||
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D s V
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sL r r R
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=
å õ

+ + +æ ö
ç ÷

  (35)     

The response we want is the inductor current scaled by Ri and affected by He and Fm . Rearranging to reveal Ti 

we have:  
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  (36)  

Ridley in his thesis reworked the formula in a welcome low -entropy form in which a second -orde r polynomial 
expression appears:  
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  (37)  

where  
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   (38)  

and  

       
0

1 2

1

L C
w =     (39)    

Now using this formula, I have plotted the response of the loop gain depending on the injected compensation 
ramp in Fig. 21. As already conf irmed by the SPICE simulation, there are no subharmonic poles in this plot. You 

can see the peaking due to the buck LC resonating components but the instability comes from the crossover 

frequency fc.  

Without external ramp ( m c = 1), as we go up the frequen cy axis, the phase margin fades away because of the 

stress imposed by the RHP zeroes pair located at Fsw /2: no wonder the inner loop is unstable  with this scenario. 

By injecting an extra amount of ramp, you lower the magnitude curve and force crossover at a more favorable 

location, where the phase stress is less severe.  
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Fig. 21. The current loop gain does not show subharmonic oscillations but a lack of phase margin.  

For instance, with a 100% compensation ramp ( m c = 2), the crossover is slightly below 20 kHz and the phase 

margin is now greater than 70°. As you keep increasing the compensation ramp amplitude, crossover reduces 
and phase margin improves. The compensation ramp, however, shall not be of too large an amplitude as it 

defeats the current -mode con trol scheme and makes the converter operate closer to a voltage -mode type of 
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control. This makes sense intuitively as the artificial ramp amplitude no longer becomes negligible with respect 
to the inductor information.  

I f we now consider the upper frequen cy portion of the spectrum while setting the sampling gain He to 1, it is 

possible to show that the high - frequen cy loop gain expression becomes  

()
( ) ( )

21
,HF 2

1 2

1 1
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cload s c
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F w
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 (40)  

in which the 0 -dB crossover pol e is defined as  

( )1

s
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F

m D
w =

-
    (41)  

 
Without ramp ( m c = 1) and a duty ratio of 50%, the maximum crossover frequency the current loop can attain 

is 

( ) ( )
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1 1 1 0.5
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2 2

s s

c s

c

F F

m D F
f

p p p

- ³ -
= = = º   (42)   

which is what the blue dashed curve in Fig. 22 confirms.  

Measuring The Current Loop  

The model we have detai led here has been validated on many occasions by Ridley in his thesis and later on 

through other measurements. However, I wanted to show how this can be done with a simulator like SIMPLIS 
because it is not an obvious exercise.  SIMPLIS is the choice here, r ather than SPICE, because it allows easy 

generation of Bode plots  without resorting to the use of an average model as would be required in SPICE . 

Unlike in a classical Bode plot analysis in which the stimulus and the response are analog signals, the variab les 
at play here are the duty ratio and the peak inductor current. Both are discrete values changing cycle by cycle. 

How can we then conduct a measurement on a working board?  

The paper referenced in [10] describes how a digital modulator can do the job. The goal is to add a small 
modulation to the existing duty ratio while keeping the loop closed. The adopted principle is described in Fig. 

23.  
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Fig. 23. A digital modulator takes the original duty ratio and adds a small ac modulation to it.  

Basically, the  output of the main PWM latch dy is immediately passing through the modulator and appears in dx 

which drives the power MOSFET on. It stays in this mode for the on - time duration. When dy drops, output dx 

does not immediately follow but a small amount of tim e is added before this happens. If this extra time is ac 

modulated by a pulse -width modulator, then you have a means to insert a digital perturbation in the loop gain. 
This is what the right - side schematic assembled with logic gates did back in 1986.  

In or der to test this circuitry under SIMPLIS, I have built a simpler architecture also featuring a pulse -width 

modulator. It is presented in Fig. 24.  

 
Fig. 24. A simpler digital modulator has been built in SIMPLIS to measure the current loop gain.  


