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Do Eddy Current Effects And Self Heating Cause Distortion In Audio Cables? 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

Eddy current effects are a fundamental concern in power magnetics design for switched-mode power supply 

applications. Conceptually, they are a potential concern in another area of electronics—audio applications, 
specifically in audio cables connecting amplifiers and speakers. Since eddy current effects lead to variations in 

resistance, they are a potential source of distortion in audio cables. While the issue of audio cable distortion falls 

outside of the realm of what’s typically addressed in power electronics forums, it’s notable (and hopefully 
interesting to designers) that the analytical tools used to design power supply magnetics can also be applied to 

analyzing audio cable distortion.     

However, eddy current effects are not the only source of variation in audio cable resistance. The resistance of a 

conductor also increases with temperature from self-heating and with the frequency of the current it conducts. 
An audio cable with resistance Rw in series with resistive load RL forms a voltage divider. Divider attenuation Av 

varies with both time and frequency.  

Variation in eddy-current resistance is not an impedance effect and no phase shift occurs. But cable eddy-
current inductive reactance also varies with frequency. However, cables are usually designed to have 

conductors of opposite current polarity in close proximity, and this largely cancels the magnetic fields of each 

and minimizes inductance. Nevertheless, inductive reactance is present and does vary over the audio frequency 
range. At 10 kHz, a 1-μH cable has about 63 mΩ of inductive reactance. At 100 Hz, it is 0.63 mΩ, a variation of 

2 decades that causes Av(jω) to vary. Capacitance between opposing conductors also causes Av(jω) to vary. 

While inductive reactance and capacitive reactance effects on audio cables are worth considering, they will not 

be studied in this article. 

This article surveys the audio cable analysis problem through magnetics and heat transfer considerations, and 
includes a magnetics background tutorial on magnetics as it relates to audio cables. Nonlinearity caused by 

eddy-current effects and self-heating in audio cables is reviewed for audio distortion (IMD and THD) with the 

bulk of this analysis focusing on eddy-current effects. A tutorial background on the skin and proximity effects in 
audio cable for determining the extent of cable resistance variation is followed by analysis of a single wire and 

twisted strands of round wire.  

Effects on cable resistance that cause the cable transmittance to be time-variant (such as those due to self 
heating) cause nonlinearity. After analyzing these effects, we’ll consider what improvement in linearity, if any, 

from plating the periphery of a conductor with a higher-conductivity material such as silver or gold may be 

achieved.  

Skin Effect 

The simplest cable to analyze for eddy-current effects is a single (or solid) isolated wire. Without other 

conducting wires nearby, the proximity effect is absent and only the skin effect occurs. Multi-strand wire has a 

bundle skin effect.  

Fig. 1 shows a conductor cross-section with magnetic field density vector B and resulting eddy-currents induced 

by B into the cross-section of the conductor according to Faraday’s Law. A magnetic field vector into the page 

() induces a CCW current, as shown in Fig. 1. The B-field is set up by the main current i. 
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Fig. 1. The skin effect: current i in a wire generates a magnetic field within it that drives the 
resulting current distribution toward the wire surface. Eddy currents iB are induced into the 

conductive wire cross-section by B, canceling i on the inside and aiding it on the outside of their 

loops. 

The inner lines or “filaments” of induced current iB oppose the main flow i near the center of the wire while near 

the edges they aid. The effect is an uneven current distribution across the wire whereby most of the current 

flows at the periphery or “skin” of the wire.  

The distribution is graphed in Fig. 2 for a round wire. J is maximum current density, j(r) is the radial current-

density distribution, r is the radius from the periphery, and rc is the conductive radius. The distribution shows 

an exponential decay from the conductor edge (at 0) to the center (at 1).  

 
Fig. 2. Graph of current density distribution in the cross-section of a wire. r/rc  = 0 at the wire 

surface. 

Skin depth δ is the width at the conductor edge that the current would flow within if it were uniform in density 

across δ, as graphed in Fig. 3 for δ = 0.2rc. 
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Fig. 3. The equivalent current density from the skin effect has the current flowing uniformly at 

the wire surface to a depth of δ = 0.2 on this plot. 

The area in the hatched rectangle of width δ/rc is the same as that under the exponential curve; 
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Thus δ is the depth of the ring from the edge into the wire in which the current would flow were it distributed 
uniformly within this ring of width δ.  

Skin depth is a physical characteristic length or length-constant that is derived from fields theory (the 

Helmholtz diffusion equation) as 

fμ
f




π
)(


  

where ρ is conductor resistivity, μ is permeability, and f is current frequency in Hertz. Besides frequency the 

other three quantities are either a geometric constant (π) or properties of the conductor material (ρ, μ). They 

can be lumped together for a given material, resulting in a simplified 

Hz/
)(

f

r
f    , 80 °C, rδ(Cu) = 73.5 mm, rδ (Al) = 94 mm, rδ (Au) > rδ (Cu) 

Gold has less conductivity than copper and its skin depth is greater. Silver conductivity is more than copper, but 

not by much. 

Wire Size And Resistance Ratios 

The skin effect in a round wire of radius rc is expressed as the round-wire conductor radius in units of skin 

depth: 
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If the equivalent of the total current flows at a depth of δ and the wire radius is chosen to be rc = δ, or ξr = 1, 

its conductive area is about 63% at the given frequency of current. Because current distribution is exponential 

with a tail going to infinity beyond a finite rc, the utilization is not exactly one; ξr = 1 is an approximate 

optimization criterion for isolated (single) wires.   

The static-resistance multiplier that accounts for increased resistance from eddy-current effects is FR. An 

approximate expression for FR can be derived for an isolated (single) round wire as the ratio 
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At 0 Hz, Rw = Rw0, and the current is uniformly distributed in the wire having an area of 

2
0 π cc rA   

At frequency f the conductor is reduced effectively to that of a ring of thickness δ with cross-sectional area 
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For physical significance, δ ≤ rc and ξr ≥ 1. Then an approximate 
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FRw  1, for ξr < 1 

The second approximation, of ξr /2, applies whenever ξr >> 1. As ξr becomes large, the plot of FRw is asymptotic 

to a line with a slope of ½. Asymptote FRw(∞) is plotted as a dotted line against ξ on the log-log plot in Fig. 4. 

Some values are also tabulated to the right of the graph. 

On the plot,  

2log)log(log  rRwF  , ξr  ∞ 

The approximated FRw is minimum for ξr = 1; 1)1( RwF .  

FRw of an isolated single wire increases with ξr as does Rw. As frequency decreases, δ increases monotonically 

until the resistance is the static resistance. For ξr < 1, δ exceeds the radius of the wire. The increase in FRw as 

given above for ξr < 1 expands the shell of current beyond the center of the core itself in the approximation but 

continues to reduce the exact FRw.  
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Fig. 4. Graph and table of skin resistance FR relative to resistance for a constant current as a 

function of round-wire radius ξr in units of skin depth δ. FRw is the resistance ratio for a single 
wire isolated from external magnetic fields. 

The FRw equation was derived on the assumption of uniform current in the shell but it actually decreases 

exponentially toward the center. Because it is not uniform in density as was assumed, the exact FRw for 

decreasing ξr asymptotically decreases toward one and is the solution of a modified Bessel equation. The 

current density at the center of a round conductor spans its range from about all to none over the range of 

about 1 ≤ ξr ≤ 10. 

Strands Of Wire 

To demonstrate that a cable consisting of multiple strands of reduced wire size can increase conduction and 

decrease Rw(f), consider the simple case of comparing a wire of conductive radius rc and area Ac1 with two 

wires, each of area Ac2 = Ac1/2 and radius 2/cr . The smaller wires have the same total static conductive area 

as the larger wire. The effective areas having skin depth δ are, to use the uniform-current-in-shell 

approximation, 
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A larger cross-sectional area has lower resistance. To compare, the area ratio is 
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A ratio of greater than one favors the smaller wires. At fδ (rc), ξr = 1, the ratio is about 0.828, and the larger 

wire has lower resistance. Crossover is at ξr = )12(2/1   1/0.828  1.207, and FRw  1.030. For increasing 

ξr the smaller wires collectively as a bundle have lower resistance. (A lower limit on resistance for reduced wire 

size is reached because the conductive area to total bundle area, or packing factor kp = Ac/Ab of the wires, 

decreases sublinearly with decreasing rc, and as we will see, from the proximity effect because of an increase in 

number of strand layers. 

ξr FRw 

1 1 

1.5 1.125 

2 1.333 

2.5 1.563 

3 1.800 

3.5 2.042 

4 2.285 

5 2.778 

10 5.263 
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Frequency-Dependent Resistance 

The ratio of total resistance of a conductor at frequency f to its static (0 Hz) resistance Rw0 is designated as the 

frequency-dependent resistance factor 
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Total resistance, which includes eddy-current effects, is then 
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Expressed in dynamic resistance Rw~ caused by varying component i~ of the current, 
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For symmetric bipolar waveforms such as sine-waves, FR applies to the entire waveform. Ohmic power loss of a 

cable can be expressed in FR with current waveform form factor 

i

i
~

 , i
~

= rms current, i  = average current 

and waveform ripple factor  

i

i
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  , ~î  = ripple amplitude 

The RMS current squared, decomposed into its average or static and varying components, is 
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~

22 )(
~~

iiii    

Total RMS current is expressed in κ and average current. Then solving for the varying or ripple RMS component, 
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The average winding power loss is 

0
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The static power is 

0
2

0 ww RiP   

Additional loss occurs because of the ripple harmonics. A triangle-wave waveform has a ratio of total electrical 

power loss to static power loss of  
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This indicates how much greater the loss is because of the eddy-current effects. For a constant waveform, 

γ = 0. 

Proximity Effect 

The skin effect is intra-conductor or intra-bundle; the proximity effect is an inter-conductor effect and applies to 

cables with twisted strands of wire. Wires in close proximity share B-fields and magnetically couple, wire to 

wire, as shown in Fig. 5. Current i flowing downward through the inner wire generates the B-field coming out of 
the page according to the right-hand rule. 

 
Fig. 5. The proximity effect is like the skin effect, but from another wire in proximity. The outer 

wire has induced into it from magnetic field B of i in the inner wire a current that crowds its 

current distribution away from the inner wire. The same happens for the inner wire. Varying 
currents in proximity to each other repel each other. 

As i varies in time, B varies and induces a voltage, as shown in Fig. 5, into the adjacent wire linked to B 

according to Faraday’s Law:  

dt

dB
vinduced   

The induced voltage causes current to flow on the near side of the outer wire in the opposite direction (hence 

the negative sign in Faraday’s Law) to that of the inner wire. On the outer side of the outer wire, current flows 

in the same direction as i. Currents flowing in the same direction in adjacent wires will repel each other and 

concentrate on the opposite sides of the two wires. If they are of the same winding, then the outer wire has in 
addition to the induced current the winding current i. Its outer side thus supports 2·i of current, i from the 

winding current and another i from the induced current.  

The larger picture for a winding cross-section is shown in Fig. 6. (Rotate the top of Fig. 5 into the page and flip 
right to left. The left-side inner two conductors are shown in Fig. 6.) Although each winding layer on each side 

of the loop conducts the same amount i of net current, successive outer layers accumulate the mutual coupling 

effect because the induced current from inner layers adds to i to produce additional induced current in the outer 
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layers. The dashed arrows point to the currents they contribute by mutual field coupling. This is the proximity 
effect. 

 

 
 

Fig. 6. The proximity effect has a cascading effect on multiple winding layers. Loss from the effect 
grows worse with layers by M 2 for M = number of layers. 

Between layers, B points upward. Moving outward, its magnitude B increases for each successive layer until, at 

the outer side of the outermost layer, it is greatest. Applying the simplified form of Ampere’s Law, 

iMNilH    
l

iM
B


   

where l is the loop length and M is the number of layers of current i enclosed by a given layer (including its own 

i). The additional induced current dissipates power in the winding along with winding-terminal current i. Each 

successive layer adds more current, and the total current increase over single-layer current i for M layers is  

2

1 2
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2])1[( MM
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m







 = 1, 4, 9, 16,  

The M2 rate of increase of the sequence causes an M4 rate of increase in conductor power loss, 

 Pw = Rw·(M 2·i)2 = M 4·Rw·i2 

The proximity effect can be much greater than the skin effect for multiple winding layers and often causes the 

more inclusive FR—the sum of both skin-effect FR = FRS and proximity-effect FR = FRP—to be increased; 

RPRSR FFF   

The B-field from an adjacent conductor is orthogonal to the B-field produced in the conductor from the skin 
effect, and the two effects combine by algebraic addition. The skin effect produces opposing fields on each side 

of a layer of wire strands—odd symmetry for B—while the proximity effect is caused by the field contribution 

from other layers, is external to the layer, and of the same polarity on both sides of it—an even symmetry. 

The Dowell Eddy-Current Equation 

Field derivations have produced formulas for the combined skin and proximity effects. They were originally 

published by P. J. Dowell in the Proceedings of the IEE, August 1966, and are not repeated here. His results are 

our starting point for including frequency effects in audio cables. With multiple-strand bundles, fields of the 
turns interact according to the proximity effect. 
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Dowell’s equation is of the form FR(ξ, M) where ξ is not that of a round wire but of a flat conductive plate. To 

convert to round wire, a geometric conversion constant, 

547.1
4
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
 pwr kg  

is included so that ξ = grξr. ξ = ξ ( f ) = rc/δ( f ). Wire radius rc can be expressed instead in AWG and held at a 

fixed wire size while f is swept for a frequency response plot of FR(ξ(f), M). 

The number of layers of Ns strands in a twisted bundle is approximated as though the bundle were square, with 

sN  layers and sN  strands per layer. If the strands form rings around a central strand, the layer count is 

the same. Then the strand count is the square of the layer count; 

sNM    2MN s   

For a given strand wire size, as f varies, ξ is proportional to f ½, and a graph of FR(ξ, M) against ξr as the 

independent variable and M as parameter results in a family of curves, shown in Fig. 7 on the left. What is more 

useful for audio analysis is FR(f, M), shown in Fig. 7 on the right—the frequency response of FR(f, M) with layers 

M as parameter.  
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Fig. 7. Graphs of (left) constant wire-radius resistance ratio FR versus wire radius in units of skin 

depths ξr and (right) FR(f, M) in frequency f in kHz and for 24 AWG wire. The steeply rising region 

of the curves is caused by the proximity effect which in multiple layers dominates over the skin 
effect. 

As strand count and thus strand layers M increase, FR is increased by M2. A single isolated wire has the lowest 

FR = FRw approximated by ξr /2 on the Fig. 7 graph. For a single strand, FR(f, 1) > FRw because the Dowell 

equation is based on parallel conductors, and FR(f,1)  2FRw. 

  
The lowest FR is achieved with many parallel strands of small wire, and the bundle FR for N strands is 

s

R
R

N

F
f   

As cable area is held constant and wire size decreases, strand and layer counts increase. The curves become 

asymptotic with large M in the high-ξr region. Adding strands increases cable strand layers, but the layer curves 
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each have a parallel asymptote. In the low-ξr region, the fR curves flatten below 10 kHz, as they approach 0 Hz. 

Their quasistatic (0+ Hz) values are minimum and linearly related, decreasing with increasing Ns. Eddy-current 

effects are minimized by using many strands of small twisted wire.  
 
Eddy-current effects are shown in Fig. 8. The three distinct regions of fR are distinguished by slope. In the mid-f 

region of dominant proximity effect, the change in fR, or ΔfR, is highest, and is in the audio region. At 1 kHz, the 

effect of eddy-current resistance is negligible.  
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30.01
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fR f 2( )

fR f 3( )

fR f 4( )
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fR f 10( )

f

kHz  
Fig. 8. Log-log plot of constant-strand-size (24 AWG) bundle resistance ratio fR(f, M) for layers M 
= 1 through 5 and 10 (Ns = 1 through 25, 100). fR plots converge at high frequency where M has 

little effect. 

Over the audio range of 20 Hz to 20 kHz, ΔfR as shown in Fig. 9 for 24 AWG wire approaches an asymptotic 

value with layer or strand counts of slightly over 3.8%. The variation for a single layer (and strand) is 

somewhat less at 3.1%. With larger wire, the curves retain the same general shape with three distinct regions 

but shift to lower frequencies as shown in Fig. 10 for a wire size of 20 AWG. An increase in size from 24 AWG to 

20 AWG causes a 58% greater increase in ΔfR, of 22.5% at M = 7.  
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Fig. 9. Graph of ΔfR(M) plotted versus Ns = M 2 showing a change of 3.06% for a single strand to 

3.80% for Ns = 49 (M = 7). Above about 5 layers, the change in ΔfR is negligible for 24 AWG 
wire.  
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Fig. 10. In these graphs Fig. 8 (left) and Fig. 9 (right) are repeated for larger 20 AWG wire. The 

fR curves have shifted to lower frequencies but the change ΔfR is about 22.5% at M = 7 (a big 
speaker cable), or about 58% higher.  

Variation in fR with frequency causes the frequency response to also vary, but these curves remain constant 

over time and consequently have a linear low-pass filtering effect. In Fig. 11, wire size is decreased to 28 AWG. 

The fR curves predictably shift to the right and ΔfR decreases to 0.61% for 7 layers. A change of wire size has a 

significant effect on fR(f). More strands of smaller wire reduce ΔfR, but the benefit is limited by the bundle skin 

effect whereby the layers have a skin-effect distribution of current in them. 
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Fig. 11. In these graphs Fig. 10 is repeated with smaller 28 AWG wire. ΔfR now reaches a 

maximum of about 0.61% for 50 strands, and 0.49% for one strand. 

Resistance Variation And Nonlinearity 

The effect of varying cable resistance can be analyzed from the circuit in Fig. 12. 
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Fig. 12. The equivalent circuit of an amplifier source vg driving an audio cable of resistance Rw( f ) 

to speaker load resistance RL. As vg varies its output frequency, Rw changes with it. 

The transmittance of the cable is that of the voltage-divider equation, 
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Rw is proportional to fR. Variation in Rw with frequency varies Av and results in a modification of the audio-

system frequency response. This variation can be frequency-corrected for a constant (flat) response, though 

Rw(f ) is not linear and, like delay lines, does not have a finite number of poles or zeros. It can only be 

approximately corrected, and this lack of flatness might be what some “golden ears” detect.  

The extent of ΔAv(f) can be calculated for various audio systems from the foregoing eddy-current formulas. The 

values for ΔfR over the audio range suggest possible detection in listening tests. 

The other identifiable cause of cable resistance variation is self-heating or thermal distortion of the cable. 

Copper has a temperature coefficient (TC) of about 0.4%/°C. A 100-mΩ speaker cable (50 mΩ per conductor, 2 

conductors) delivering 5 A to an 8 Ω speaker dissipates 2.5 W. If the cable thermal resistance is 4°C/W, then 

cable temperature varies with current by 10°C, and ΔRw /Rw is about 4%. The fractional change in attenuation 

to change in Rw before heating is  

81

1

 0.1

 8
1

1

1

1

/

/













w

Lw

v

v

w

ww

vv

R

RdR

dA

A

R

RdR

AdA
 

Thus a 4% change in Rw causes a fractional change in Av of 4%/81  0.05%. Furthermore, this change occurs 

at thermal rates which can be within the audio spectrum as thermal distortion or “power thermals”. The heat-
flow rate depends on the thermal diffusivity of wire, insulation, and air, though the change in temperature at 

the heat source within the wire—and hence its resistance—occurs at rates that can be within the audio 

spectrum. 

Assessment 

The question of interest is whether thermal or eddy-current effects cause significant intermodulation distortion 

(IMD) or harmonic distortion (HD). The effect of a varying attenuation Av(f) with frequency of a linear filter is 

not distorting because resistance remains constant with frequency. Cable resistance that changes during a 
frequency sweep causes the circuit to be time-variant and hence nonlinear.  
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Eddy-current effects will cause roll-off of Av(f) but it will not have the same frequency response as a single-pole 

RC integrator. Eddy-current variation in cable resistance is reduced by silver- or gold-plating the conductor(s) 

but will not eliminate distortion from eddy-currents. Even so, plating reduces ΔRw(f). Furthermore, eddy 

currents also cause cable inductance to vary with frequency, and that effect was not included in this 
introduction to the problem, though it is less likely to be as significant. 

Thermal distortion is also a prospective cause of audio distortion but is harder to analyze because thermal 

diffusivity α is the key variable, and α(f) is hard to measure. Diffusivity is itself a dynamic parameter and for it 

to vary also causes thermal system time-variance in Rw.  

The tentative conclusion is that both cable thermals and eddy currents might cause the distortion that “golden 

ear” audiophiles claim to hear caused by the cables. Whether these effects are too small to hear is a question 
requiring nonlinear, time-variant thermal and electric-circuit analysis. Such analysis goes beyond the scope of 

this article, but it is within the capability of nonlinear systems and control theory to determine the magnitude of 

the distorting effects by combining thermal and magnetic-field FEA. This is a task for applied mathematicians of 
the Audio Engineering Society and is on the esoteric fringe (“fringineering”) for power electronics! 
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For more on magnetics design, see these How2Power Design Guide search results.   

http://www.how2power.com/pdf_view.php?url=/newsletters/1703/H2PowerToday1703_FocusOnMagnetics.pdf
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