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Current-Mode Control Stability Analysis For DC-DC Converters (Part 2) 

by Timothy Hegarty, Silicon Valley Analog, Texas Instruments, Phoenix, Ariz. 

In this article, part 2 of 2, we discuss current-mode control loop compensation[1] for industrial and automotive 

applications. Starting from the small-signal model, simple expressions are derived that yield an intuitive 

procedure for designing the compensator for a current-mode-controlled buck converter. Even with an error 
amplifier of finite gain-bandwidth, the simplicity and convenience of this design procedure makes it viable for 

everyday use by the practicing power electronics engineer.  

To bolster the theoretical analysis, an actual design example based on a commercially available PWM regulator 
is presented here with simulation used to verify the results obtained from the aforementioned design procedure. 

This discussion assumes some understanding of current-mode control and how it’s modeled. For those who 

want to review current-mode operation and small-signal modeling, check out Part 1 again.[1] 

Compensator Transfer Function 

A type-II compensator using an error amplifier (EA) with transconductance, gm, is shown in Fig. 1. 
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Fig. 1. Small-signal representation of an operational transconductance EA. The component 

combinations representing two poles and one zero are circled. 

The dominant pole of the EA open-loop gain characteristic is set by the EA output resistance, REAout, and the 

effective bandwidth-limiting capacitance, Cbw, as in equation 1: 
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The influence of any EA high-frequency poles, whether parasitic or included by design, is neglected in the above 

expression. The compensator transfer function from output voltage to COMP, including the gain contribution 

from the feedback resistor divider network, is given by 
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and the feedback attenuation factor is 
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Evaluating equation 3 gives an expression of the form 
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As pEA1w  and pEA2w  are well separated in frequency, the low-Q approximation applies and equation 5 becomes 
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Typically,  , Ccomp EAout comp hf bwR R C C   and the approximations set forth in equation 7 are valid. Circled in 

Fig. 1 are the components to provide two compensator poles and one compensator zero. Fig. 2 gives an 

example of the typical frequency response of both the open-loop EA and the compensator. 
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Fig. 2. Small-signal frequency responses of open-loop EA and compensator. 

In this example, the feedback attenuation is unity, and the EA has 50 dB of open-loop dc gain and a 5-MHz 

bandwidth. Again, the poles and zeros are denoted with x and o symbols, respectively, and a + symbol 
indicates the EA bandwidth. Not included in the phase plots is the 180° phase lag contribution related to the EA 

in the inverting configuration. 

Compensator pole wpEA1 appears at very low frequency and is easily replaced by an integrator term. The 

compensator transfer function simplifies to 
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where the integrator gain term, Ac, is given by 
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Note that both feedback resistors, Rfb1 and Rfb2, factor into the control-loop gain when a transconductance-type 

EA is used. In contrast, if an operational amplifier-type EA is employed, the FB node is effectively at ac ground 

and the lower feedback resistance bears no influence on the loop dynamics. 

Compensator Design 

A frequently used compensation strategy that generally applies to peak, valley, and emulated current-mode 

circuits is to equate the control-to-output transfer function to the compensator transfer function term-by-term 

to attain a single-pole (–20 dB/decade) roll off of the loop response. To demonstrate, consider 

 one compensator pole, wpEA1, positioned to provide high gain in the low-frequency range, minimizing 

output steady-state error for best load regulation; 

 one compensator zero located to offset the dominant load pole, wzEA = wp, which typically is the 

minimum load resistance (maximum load current) condition used; and 

 one compensator pole positioned to cancel the output capacitor ESR zero, wpEA2 = wesr. 

The loop gain is expressed as the product of the control-to-output and compensator transfer functions. From 

equation 5 in part 1 and equation 8, the loop gain is 

zEA

2

2
pEA n

s s
1 1

(s) (s) (s)
s s s ss 1 1 1

c dc
esr

c v

p n

A A

T G G

Qω

w w

w w w

   
    

   
  

    
              

. (10) 

Select the crossover frequency wc = 2fc (where the loop gain is 0 dB) between one-tenth and one-fifth of the 

switching frequency. If wzEA = wp and wpEA = wesr, the loop gain reduces to 
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Assuming a well-designed current loop (0.5 ≤ Q ≤ 1), the sampling gain contribution is insignificant at 

frequencies up to the crossover frequency. This assumption precludes the case where too much slope-

compensating ramp is added. The magnitude of the loop gain at the dominant pole frequency is 

   zEAp c dc comp comp m fb dc compT j T j A A R C g A A Rw w   . (12) 

Using basic Bode plot principles, it is apparent that 
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Thus derived, a straight-forward solution for the crossover frequency is 

c p m fb dc compf f g A A R  .   (14) 
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Finally, compensator component values are calculated sequentially as 
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The compensator zero is positioned at one-fifth of the target crossover frequency. An initial value is selected for 

Rfb2 based on a practical minimum current level flowing in the divider chain. Note that the compensation zero 

frequency represents the dominant time constant in a load-transient response. A large Ccomp capacitor is thus 

antithetical to a fast transient response settling time. Ccomp is adjusted mainly to tradeoff phase margin and 

settling time. A phase margin target of 50° to 60° is ideal. Furthermore, a smaller compensation capacitance is 
advantageous, if the transconductance EA has a low output-drive-current capability. 

Compensator Design Example 

The circuit operating conditions, key component values and control circuit parameters for the LM21305 peak-

current-mode synchronous-buck PWM regulator[2] are specified in the Table. A switching frequency of 400 kHz 

provides a suitable tradeoff of efficiency versus size.[3] 

Table. Buck converter parameters for a peak-current-mode synchronous-buck PWM regulator (LM21305). 

Vin 8 V to 18 V fs 400 kHz Cbw 38 pF 

Vout 5 V Rdc 36 m Vslope 0.462 V 

Iout 5 A Resr 7 m Se 0.185 V/s 

D 0.43 Ri 115 m Sn 0.245 V/s 

Lf 3.3 H REAout 430 k mc 1.754 

Cout 100 F gM 2.4 mS Q 0.641 
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With 12-V nominal input, the relevant gains and corner frequencies are calculated using expressions from part 1 

as 
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  (16) 

If the output capacitor is ceramic, a capacitance derating for applied voltage is necessary. In these calculations, 
a derating of 45% is used. Given a target crossover frequency of 60 kHz, using the equations in 15, the 

compensation component values are found as 
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Fig. 3 shows Mathcad-derived loop gain and phase plots for the example converter. The equivalent plots with an 

ideal EA are also shown with dashed lines. (The nonideal EA has a bandwidth-limiting capacitance, Cbw, which 

appears in parallel with Chf as shown above in Fig. 1.) The phase margin (PM or M) is the difference between 

the loop phase and –180° (EA inversion phase lag contribution not included). Note that if Chf is not installed, the 

EA itself provides high-frequency attenuation by virtue of its finite gain-bandwidth. 
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Fig. 3. Buck converter loop gain and phase plots based on the LM21305. 

 

Control Loop Simulation 

Using an LM21305 PWM regulator in a buck converter configuration per Table 1, a SIMetrix/SIMPLIS[4] switching 

model circuit simulation is run to substantiate the just-completed analysis. Fig. 4 presents the model schematic. 

The loop gain Tv(s) of the system is measured by breaking the loop at the upper feedback resistor, injecting a 

variable-frequency oscillator signal, and analyzing the frequency response. The element with reference 

designator X1 in Fig. 4 is the SIMPLIS clock edge trigger to find the circuit’s periodic operating point (POP) 

before running the ac analysis.  

POP analysis works on the full nonlinear switching time-domain model of the circuit and enables subsequent ac 

or transient analyses. The ac source with reference designator Vinj in Fig. 4 is the input stimulus for the ac 

sweep and its amplitude is automatically controlled to keep the ac response in the linearized small-signal 
region. Fig. 5 illustrates a Bode plot simulation result that aligns closely with the analytical result in Fig. 3. 
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Fig. 4. SIMPLIS ac and transient analysis simulation schematic for the LM21305-based buck 

converter. 
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Fig. 5. Results of Bode plot simulation.  

Using a SIMPLIS time-domain transient analysis, load-on and load-off transient responses are obtained (see Fig. 

6) with high (3.9 nF) and low (1.5 nF) compensation-capacitor values chosen so that the compensator zero is 
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located directly at the load pole and the power stage resonant frequencies, respectively. The load step is from 

50% to 100% full load at 1 A/s. It is evident that the lower compensation capacitance results in a much more 

favorable settling time. Interestingly, this is achieved with very little relative change in the Bode plot— 

approximately 1-kHz decrease in crossover frequency and 4° less phase margin using the 1.5-nF capacitor. 
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Fig. 6. Load-step transient response simulation with 1.5-nF and 3.9-nF compensation 

capacitance. 

Conclusion 

Simple expressions for current-mode control yield an easy and straightforward outline for compensating a buck 

converter. Understanding the frequency-domain Bode plot information helps to optimize the time-domain load 

transient response waveform. The reader is encouraged to consider the application to other peak-current-mode-
controlled converter topologies like boost or flyback, and to consult works such as reference 5, which provide 

further background and analysis of current-mode control. 

References 

1. “Current-Mode Control Stability Analysis For DC-DC Converters (Part 1),” by Timothy Hegarty, 

How2Power Today, June 2014 issue. 

2. LM21305 5-A Current-Mode Synchronous Buck Regulator EVM. 

3. “The Buck Regulator Efficiency/Size Tradeoff Dilemma,” Power House, Texas Instruments, December 2, 

2013. 

4. SIMetrix/SIMPLIS simulation software. 

5. “Current-Loop Control In Switching Converters,” by Dennis Feucht, How2Power Today, September 2011 

through March 2012 issues. After reviewing the history of current-loop control theory (i.e. how to 

accurately model current-mode control), this article series attempts to clarify established concepts, 

identify problems with the existing theories or models of current-mode control, and offer what might be 
the first truly unified model of current control.   

 

http://www.how2power.com/newsletters/
http://www.how2power.com/pdf_view.php?url=newsletters/1406/articles/H2PToday1406_design_TexasInstruments.pdf
http://www.ti.com/sva-ppd-nps-widevin-lm21305-contrib-020-pf-en
http://www.ti.com/sva-ppd-nps-widevin-pwrhouse20131202-contrib-020-blog-en
http://www.simplistechnologies.com/
http://www.how2power.com/article/2014/H2PToday_Current-ModeControlSeries_Innovatia.pdf?NOREDIR=1


 

 

Exclusive Technology Feature 

 
 

 © 2014 How2Power. All rights reserved. Page 10 of 10 

 

About The Author 

Timothy Hegarty is a systems engineer with the Texas Instruments Silicon Valley 

Analog group. He received his bachelor’s and master’s degrees in electrical 
engineering from University College Cork, Ireland. His area of interest is integrated 

PWM switching regulators and controllers for wide input voltage range industrial and 

automotive applications. He is a member of the IEEE Power Electronics Society. You 

can reach Tim at ti_timhegarty@list.ti.com. 

 

 

 

For further reading on power supply control methods, see the How2Power Design Guide, select the Advanced 

Search option, go to Search by Design Guide Category and select “Control Methods” in the Design Area 

category.  
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