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Determining Maximum Usable Switching Frequency For Magnetics In CCM-

Operated Converters 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

Power converter size limitations require that magnetic components be made as small as possible while 

delivering the specified output power. The goal of this article is to develop design constraints for the optimum 

switching frequency, fs, that produces maximum core power transfer within acceptable power loss for 

converters operating deep in continuous conduction mode (CCM.) These include buck-boost (common inductor), 
flyback and Cuk-derived circuits. 

The basic equation for average power transfer through a linear transductor is 

ssL fVHBfWP  ])ˆ2[( ~  

where the magnetic field density ripple amplitude = ~B̂ = ΔB/2, the average (operating-point) field intensity 

= H , core volume = V, and switching frequency = fs. For linear magnetics, the per-cycle energy transfer 

through the core is ΔWL.  

~Ĥ  corresponds to input current ripple in the circuit and is kept constant by controlling the duty ratio. Then 

incremental permeability, μ at the operating-point H , is  

dH

dB
H )(  

and dB = dμ. Under the small-ripple assumption (ΔB << B), which applies to converters operating deep into 

CCM, dB  ΔB.  

Per-cycle transfer occurs at a rate of fs and output power increases proportional to frequency for constant ~B̂ . 

When ~Ĥ  is held constant, then ΔWL decreases with frequency because μ(fs) decreases with fs. With a constant 

H waveform, ~~
ˆ)(ˆ HfB s    and also decreases with fs. The operating-point current corresponds to H , which 

is constant along with core volume. 

The transfer-power equation can be regrouped into constant and frequency-dependent factors: 

]ˆ[constant])(ˆ[]2[ ~~ ssssL fBffBVHfWP  . 

As fs increases and )(ˆ
~ sfB  decreases, constant )( sfP  is found by setting the derivative of the transfer power 

to zero and solving; 
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Then differentiating, constant power occurs under the condition that 
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Integrate both sides of the above differential equation. The result is 

CfB s  lnˆln ~  

where C is the arbitrary constant of integration. Choose the point (fs0, 0~B̂ ) to determine C. Then 

00~ lnˆln sfBC  . 

Substituting and rearranging, 
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When this constant-transfer-power condition is substituted back into the transfer-power equation, 1/ 0 PP , 

the same value as at (fs0, 0~B̂ )—a constant value of 1. 

Magnetic Power Loss Constraint 

Core power-loss density also imposes a limit on fs. The generalized Steinmetz equation, normalized to an 

operating-point at 0cp (f0, B0) (which eliminates a constant by using unitless ratios) is 
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where α and β depend on the material and are empirically determined. The “classical” values for them are α = 2 

and β = 2, but they vary with material. For typical ferrites, α  1.25 and β  2.5, though both exponents vary 

with frequency. Micrometals 26 material has exponents α = 1.36, β = 2.03. The equation as expressed around 

an operating-point (from values on its power-loss graph): cp  = 100 mW/cm3, at ~B̂  = 15 mT, fs = 100 kHz, is 
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Constant power loss with fs is derived by setting the differentiated Steinmetz equation to zero. The 

differentiated equation is 
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Solving, the condition for constant loss is 






ss fdf

BBd

/

ˆ/ˆ
~~

. 

For the classic values of α = 2, β = 2, then  
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Constant power loss occurs under the same condition as constant transfer power. Consequently, they are 

independent of fs whenever α/β = 1. 

When the constant-loss equation is solved, the constraint on constant power loss is that 
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When substituted into the Steinmetz equation, the result is a ratio of one. 

The constant-power-loss constraint can be substituted into the transfer-power equation normalized to 

),ˆ( 00~0 sfBP : 
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This is the transfer power as a function of fs with constant magnetic power loss. The closer α/β is to 1, the less 

dependent the transfer power is on frequency. For materials with α/β < 1, transfer power rises with frequency 

with constant power loss. 

 

 

http://www.how2power.com/newsletters/


 

 

Focus on Magnetics 
  Sponsored by Payton Planar 

 

 © 2015 How2Power. All rights reserved. Page 4 of 5 

Similarly, if the constant-transfer-power condition is substituted into the power-loss equation, then 
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For α < β, the exponent is negative and power loss (along with ~B̂ ) decreases with fs under constant transfer 

power. For α = β, power loss is independent of (and constant with) frequency. 

Consequently, choice of core material is optimized whenever transfer power relative to power loss is maximized, 

and this occurs for a minimum α/β. Some core materials and their parameters are shown in the following table. 

Table. Constants determining core power-loss density for various core materials.  

Core Material α β α/β 

Fe-pwd Micrometals 26 1.36 2.03 0.68 

Fe-pwd Micrometals 52 1.26 2.11 0.60 

Fe-pwd Micrometals 18 1.18 2.27 0.52 

FeSiAl (MagInc Kool-μ) 

90μ, 125μ 
1.29, 1.63 2.01, 2.2 0.64, 0.74 

NiFeMo (MagInc MPP) 

125μ, 550μ 
1.40, 1.59 2.31, 2.36 0.61, 0.67 

MnZn Ferrite MagInc P 
[1.36, 3.47], 

[100, 500] kHz  

[2.62, 2.54], 

[100, 500] kHz 

[0.52, 1.37] 

α/β  = 1 at 
371 kHz 

MnZn Ferrite MagInc K 
[2.19, 4.13], 

[0.5, 1] MHz 

[3.10, 2.98], 

[0.5, 1] MHz 

α/β  = 1 at 
721 kHz 

For ferrites, α and β vary significantly with fs. The frequency at which fs independence for both transfer power 

and power loss occurs is given in the table. At this frequency, the two power quantities are relatively constant 

with fs, being at an extremum of α(fs)/β(fs). For α/β > 1, power loss increases while transfer power decreases; 

thus, the frequency at which α/β = 1 is a maximum usable frequency, fMAX, for power transfer through the core. 

Manufacturers use ~B̂ ·fs as a material performance parameter. Ferroxcube offers the curves shown below in the 

figure for MnZn (3-series) and NiZn (4-series) ferrites. The MnZn materials have an optimal fs at maximum 

~B̂ ·fs—a maximum that results from an increasing α(fs)/β(fs). Ferrite 3C90 has a nearly linear increase with fs, 

a result of near-constant α(fs)/β(fs).  

Other categories of materials such as Fe-pwd, NiFeMo, and FeSiAl are specified with single values of α and β, 

presumably given as relatively constant with frequency. In this case, like 3C90 material and for α/β < 1, power 

transfer increases with frequency and fs is limited by circuit aspects other than magnetics. 
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Figure. Frequency-dependent performance of Ferroxcube’s MnZn (3-series) and NiZn (4-series) 

ferrites.  
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For more on magnetics design, see these How2Power Design Guide search results.  
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