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Understanding Op Amp Dynamic Response In A Type-2 Compensator (Part 1): The 

Open-Loop Gain  

by Christophe Basso, ON Semiconductor, Toulouse, France 

A compensator is an electronic filter tuned to make a control system fast and stable during dynamic operation. 

In the vast majority of studies, the compensator is an active circuit built around an operational amplifier (op 
amp) whose characteristics are considered perfect. If this approach suffices in low-bandwidth systems, 

nowadays power converters cross over at or beyond 100 kHz to ensure a transient response that is fast enough 

to limit the output voltage drop in spite of a small output capacitive bank. In these applications, calculations 
considering a perfect op amp no longer work and induce severe gain and phase distortions in the end.  

However, by accounting for the effects of the finite open-loop gain and the two low- and high-frequency poles 

of the selected op amp on the compensator’s overall response, you can select the right op amp model without 
altering the gain and phase characteristics you need at crossover. Here in part 1 of this two-part article, we’ll 

analyze the impact of the open-loop gain on the compensator’s response, purposely ignoring the low- and high-

frequency poles. Part 2 will explore the effect of the extra poles and show how they can potentially degrade the 
final result. 

This part begins with a review of the three types of compensation circuits used in power supplies followed by an 

explanation of a circuit analysis method known as Fast Analytical Circuits Techniques (FACTs), which we’ll use 

to determine the response of compensators. Here in part 1, we’ll use FACTs to derive a transfer function for a 
type 2 compensator—one that accounts for the open-loop gain of the op amp. Finally, we’ll compare results 

obtained with our derived type 2 compensator transfer function to that of the conventional transfer function, 

which assumes an ideal op amp. 

Different Types Of Compensators 

The role of a compensator is to shape the frequency response of a given circuit—a buck converter for example—

so that once the loop is closed, the control system exhibits the wanted crossover frequency fc and adequate 
phase/gain margins. The compensator forces the 0-dB crossover point by providing some mid-band gain or 

attenuation at fc. Phase margin m is adjusted by the amount of phase boost the compensator exhibits also at 

fc. Finally, the gain margin depends on the compensator’s capability to roll-off the gain after crossover. 

There are different types of compensators and those found in switching converters are commonly named type 
1, type 2 and type 3. All three versions feature a pole at the origin to offer the maximum available quasi-static 

gain (s = 0) for a precise output variable.  

A type-1 compensator is a simple integrator not providing phase boost at all. A type 2 builds on a type 1 and 
adds a pole/zero pair to offer a maximum phase boost of 90°. Finally, a type-3 circuit provides another pole-

zero pair and can boost the phase up to 180°. Fig. 1 shows the frequency response (magnitude and phase) of 

the three compensators and their respective transfer function expressions. More information on these circuits 
can be found in reference 1. 

The type-2 compensator is a popular implementation found in current-mode power supplies where the 

maximum phase boost of 90° offers plenty of compensation possibilities. Its implementation around an op amp 

appears in Fig. 2.  

You can observe a resistive divider sensing the monitored variable (Vout, the output voltage in this example) 

and a few passive components forming the filter. To determine the transfer function of this converter, we will 

first consider the op amp open-loop gain AOL and see how it affects the final expression. The transfer function G 

of this circuit is the mathematical relationship linking the excitation signal Vout to the output response VFB. 
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Fig. 1. When designing a power supply compensator, you select the type of compensator 

according to the amount of phase boost you want. 
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Fig. 2. In this compensator, we consider the op amp with a finite open-loop gain but we do not 

account for its internal poles yet. 

A Quick Introduction To Fast Analytical Techniques 

Numerous methods exist to determine the dynamic response of this filter. In this article, we will use the Fast 
Analytical Circuits Techniques (FACTs) described in references 2 and 3. The basic principle behind these FACTs 

is to determine the circuit time constants under two different conditions: when the excitation signal disappears 

(Vout is reduced to 0 V) and when the response is nulled (VFB = 0). Using this method, you will appreciate how 

quick and intuitive it is to determine a particular transfer function. 

As shown in the references, the transfer function of a first-order system featuring a non-zero quasi-static gain 

can be expressed in the following form. 
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The leading term G0 is the gain exhibited by the system for s = 0. That term carries the unit if any. Here, 

because we talk about a gain in volts/volt (V/V), there is no unit and G is dimensionless. The numerator N(s) 

hosts the zeros of the transfer function. Mathematically, a zero is a particular point sz for which the response is 

null.  

Theoretically and considering an excitation signal covering the entire s-plane (and not the vertical axis only as 

in a harmonic mode), a zero manifests itself by the nulling of the output response when the input signal is 

tuned to the zero angular frequency sz. Some particular impedance combination in the circuit blocks the signal 

propagation and the response is 0 V despite the presence of an excitation source. The zeros are numerator 
roots. Please note that this is a convenient mathematical abstraction that offers tremendous help in finding the 

zeros by inspection, without writing a line of algebra. More details on this approach can be found in reference 4.  

The denominator D(s) is formed by the circuit’s natural time constants. These time constants,  = RC or  = 

L/R, are obtained by setting the excitation signal to zero and determining the resistance “seen” from the 
considered capacitor or inductor in this configuration. By “seeing,” I mean you imagine placing an ohm-meter 

across the temporarily removed capacitor or inductor and read the resistance it displays.  

This is a quite simple exercise actually. Look at the Fig. 3 passive circuit where you see an injection source— 

the stimulus—biasing the left-side of the network. The input signal propagates through meshes and nodes to 

form the response observed across resistor R3. 
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Fig. 3. Determining the time constant of a circuit requires setting the excitation to zero and 
looking at the resistance seen by the energy storage elements, which requires that they be 

temporarily removed from the circuit. 

To determine the time constant of this example circuit, we will set the excitation to zero (a 0-V voltage source 
is replaced by a short circuit and a 0-A current source is open circuited) and remove the capacitor. Then, we 

connect (in our head) an ohm-meter to determine the resistance offered by the capacitor terminals. Fig. 4 

guides you in these steps. 
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Fig. 4. After replacing the 0-V source by a short circuit, you determine the resistance seen from 

the capacitor terminals. 

If you run the exercise on Fig. 4, you “see” rC in series with R4 in series with the parallel connection of R1, R2 all 

paralleled with R3. The time constant of this circuit is simply the product of R and C1 as shown in equation 2. 

 1 4 1 2 3 1|| ||Cr R R R R C               (2) 

We can show that the pole of a first-order system is the inverse of its time constant.  

 1 4 1 2 3 1

1 1

|| ||
p

Cr R R R R C



 

   

        (3) 

Now, what is the quasi-static gain of this circuit for s = 0? In dc conditions, a capacitor becomes an open circuit 

while an inductor becomes a short circuit. Apply this concept to the Fig. 3 circuit and redraw it as shown in Fig. 

5. In your head, you cut the connection before R4 and you see a resistive divider involving R1 and R2. Thévenin 

voltage across R2 is therefore as shown in equation 4. 

2

1 2

th in

R
V V

R R



           (4) 

The output resistance Rth is R1 paralleled with R2. The complete transfer function thus involves the resistive 

divider made of R4 in series with Rth and loaded by R3. Resistance rC is out of the picture since capacitor C1 is 
removed in this dc analysis. You can thus write the following expression. 
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Fig. 5. To determine the static gain of the circuit in Fig. 3, open the capacitor in dc and calculate 

the transfer function of this simple resistive arrangement. 

We are almost there but are missing the zero. How do we know if there is zero by the way? Well, here is a 

useful trick: consider the circuit of Fig. 3 and in your head, short capacitor C1. Now, assume you excite that 

circuit featuring the shorted capacitor. Would you be able to observe a response at Vout on an oscilloscope for 

instance? Certainly, rC shorts R3 and despite a probably low amplitude, the input signal can still propagate and 

there is a response.  

If the answer to this exercise is “yes, there is still a response despite the short circuit of C1” then there is a zero 

associated with C1. If you deal with a circuit involving an inductor L1, then carry the same exercise but with the 

inductor open-circuited. If you still have response in this mode, then you have a zero involving L1. 

We said in preamble that a zero manifests itself in a circuit by blocking the propagation of the excitation signal 

and it creates an output null. If we consider a transformed circuit—in which C1 is replaced by 11 sC —as shown 

in Fig. 6, what particular condition would imply a nulled response when a stimulus biases the network? Having a 

nulled response simply mean that the current circulating in R3 is 0. If there is no current in a resistance, there is 

no voltage across its terminals and Vout is 0 V. It is not a short circuit but rather a virtual ground. 
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Fig. 6. In this transformed circuit, when the series connection of rC and C1 becomes a 

transformed short circuit, the response disappears. 

If we have no current in R3, then the series connection of rC and 11 sC creates a transformed short circuit as 

defined in equation 6. 
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The root sz is the zero location we want: 
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leading to the following zero. 
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We can now assemble all these results to form the final transfer function characterizing the Fig. 3 circuit. 

 
 

3 12
0

2 1 4 3 1 2 4 1 2 3 1

1
1

|| || ||
1

C z

C

p

s

R sr CR
G s G

sR R R R R R s r R R R R C








 
       

   (9) 

This is what is called a low-entropy expression in which you can immediately distinguish a gain, a pole and a 

zero. A high-entropy expression would be that obtained by applying the brute-force approach to the original 

circuit when considering an impedance divider for instance, the expression in equation 10 is obtained. 
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       (10) 

Not only could you make mistakes in deriving the expression—I certainly would!—but formatting the result to 
something like equation 9 would require more energy. Also, please note that we did not write a single line of 

algebra when writing (9). If we later identify a mistake, then it is easy to come back to one of the individual 

drawings and fix it separately. The correction in equation 9 would then be easy. Now try to run the same 
correction in equation 10 and you will probably have to start again from scratch.  

You check that expressions 9 and 10 are identical by plotting their frequency response in a Mathcad sheet as 

shown in Fig. 7. 
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Fig. 7. A quick check in Mathcad tells you if the expression you have derived using FACTs 

matches the response returned by the raw expression. 

This quick introduction to FACTs is intended to show how pleasant and efficient it is to use them over simple 
and more complex circuits. By splitting a complicated architecture into simple separate circuits, you can quickly 

write a transfer function sometimes just by inspection, as we did. Now that we have introduced the tool, let’s 

apply it to our type-2 compensator. 

FACTs Applied To The Type-2 Compensator 

To efficiently apply FACTs to the Fig. 2 circuit (which for convenience is shown again in Fig. 8) we start by 

counting the energy storage elements: C1 and C2. 
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Fig. 8. The type-2 compensator has two storage elements, C1 and C2. 

Considering their independent state variables—C1 and C2 are not in series or in parallel for instance—this is a 

second-order system. Such a system can be expressed in the following form considering a non-zero quasi-static 
gain. 

 
2

1 2

0 2

1 2

1

1

a s a s
G s G

b s b s

 


 
          (11) 

For a second-order system, we can show that the denominator obeys the following formula. 

     2 2 2

1 2 1 2 2 11 1D s b s b s s s                 (12) 

The coefficient for s is simply the sum of the time constants determined for a zeroed excitation. The coefficient 

for s² is slightly more complex as it introduced a new notation:
2

1 . This notation means that you look at the 

resistance “seen” from C1’s terminals while C2 is replaced by a short circuit. A bit mysterious at first sight but 

nothing insurmountable as we will see in a few lines. 

Following the path adopted to solve the Fig. 3 circuit, we can study the system for s = 0. This is what is shown 

in Fig. 9. During the analysis, Vref is a perfect source and its dynamic response is zero (its voltage is fixed 

regardless of the modulation we apply). As such, it naturally disappears from the small-signal circuit and takes 
the form of a short circuit in ac analysis. 
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Fig. 9. In dc, open all the capacitors: the op amp runs in an open-loop configuration. 

The op amp delivers a voltage equal to  times the open-loop gain AOL. The voltage at the inverting pin involves 

the low-side resistance Rlower and  is a non-zero value in this case. 
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R R
 


          (13) 

We have two capacitors in this circuit hence two individual time constants. To determine the first time constant 

involving C2, we will set the excitation signal to zero and we determine the resistance seen from the C2 

connecting terminals while C1 is removed from the circuit. The sketch appears in Fig. 10. 
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Fig. 10. The first time constant involves capacitor C2: what resistance do you see between its 

terminals? 

If inspection worked well in the previous example, the presence of a voltage-controlled source—the op amp— 

forbids that simple approach in this case. To determine the resistance offered by C2’s terminals, we can connect 

a test generator IT and determine the voltage VT at its terminals. VT/IT will then give us the resistance we want. 

The sketch involving the current source appears in Fig. 11.  



 

 

Exclusive Technology Feature 

 

                                                          © 2017 How2Power. All rights reserved.                                             Page 10 of 16 
 

 

 

2R

1R lowerR
OLA



TI

TI

TI

TV

TI

FBV

 
Fig. 11. To determine the resistance seen between C2’s terminals, you install a test generator and 

measure the voltage across the terminals. 

The first simple equation you can write involves . The voltage between the op amp input pins is minus the 

voltage across the paralleled combination of R1 and Rlower. 

 1 ||T lowerI R R             (14) 

The op amp output scales  by the open-loop gain AOL as in (15). 

FB OLV A            (15) 

Substituting equation 14 in (15) yields the following. 

 1 ||FB T lower OLV I R R A            (16) 

VT is the voltage across the current source. In its left-side terminal you have minus  while the right-side is 

biased to VFB as expressed in equation 17. 

 1 ||T FB T lower FBV V I R R V             (17) 

If we extract VFB from (17), equate the result with (16), we have the expression shown below. 

  1 || 1T T lower OLV I R R A           (18) 

Therefore, our resistance is simply: 
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            (19) 

which leads to an expression for the first time constant, 2. 

  2 2 1 || 1lower OLC R R A              (20) 

The second time constant involving C1 requires an updated schematic shown in Fig. 12. We did not install a 
current generator because the result is obvious: the resistance seen between C1’s terminals is simply that 

already determined for C2 with R2 in series. 
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Fig. 12. The second time constant is immediately determined since it is the resistance driving C2 

with R2 in series. 

  1 1 1 2|| 1lower OLC R R A R              (21) 

Now we have our two time constants and we can carry on with the second-order term. We say that we need to 

evaluate
2

1 in which C2 is replaced by a short circuit while we look at the resistance seen from C1’s terminals. 

Fig. 13 shows the new sketch. Since we have a short circuit in the mesh involving R2, then the resistance R is 

simply R2. 

2

1 2 1R C             (22) 

This is it, we have our denominator D(s) in equation 23 if we assemble our time constants according to 

equation 12. 

           2

1 1 2 2 1 2 1 2 11 || 1 || 1 || 1lower OL lower OL lower OLD s s C R R A R C R R A s C R R A R C                    (23) 
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Fig. 13. The high-frequency coefficient uses a mysterious notation but nothing complicated at the 

end: short C2 and determine the resistance seen from C1’s terminals. 

This second-order form can be rearranged assuming a quality factor Q much less than 1. In this case, then both 

poles are well separated: one dominates at low frequency while the second is located in the upper section of the 

spectrum. We can show that from equation 12, the two poles are defined as follows. 

1

1

1
p

b
             (24) 

2

1

2

p

b

b
             (25) 

If we apply these definitions to (23), simplify and re-arrange, we obtain the next two expressions. 
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       (26) 
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R C
R R C C
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C C R R R


 


         (27) 

Now that we have the denominator, do we have zeros in this circuit? We can apply the trick unveiled a few lines 

before: if we short in our head, C1 or C2 then C1 and C2, do we have a response in these three configurations? If 

C1 is shorted, we have a simple inverter involving R2 and the other resistors: there is a zero associated with C1. 

If we short C2, then the op amp delivers zero: no zero with C2. And if both capacitors are shorted, of course, no 

response.  

To determine the zero position, what in Fig. 14 could prevent the propagation of the stimulus and make the 

response a null? If the impedance provided by C1 and R2 becomes a transformed short circuit, then the 

response disappears. 
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Rearranging the above expression we obtain the following. 

2 1

1
zs

R C
             (29) 

 out zV s

  0FB zV s 

21 sC

11 sC2R1R

lowerR

OLA

 refV s

 1 0zZ s 

 
Fig. 14. If the impedance consisting of R2 in series with C1 becomes a transformed short circuit, 

then the response is a null: this is how the zero is created. 

Equation 29 leads to the zero location below. 

2 1

1
z

R C
             (30) 

We now have our final transfer function: 

 

1 2
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p p
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  
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  
  

         (31) 

where G0, and the pole and zero locations are defined as shown in equations 32-35. 
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Comparing The Response Between Circuits 

It is now interesting to compare the dynamic response of a type-2 circuit in which we account for the open-loop 

gain with the response of the perfect transfer function of the type-2 compensator given below:[1] 

  0

1

1

z

p

sG s G
s











          (36) 

where G0, ωZ and ωp are as follows.  

2 1
0

1 1 2

R C
G

R C C
 


          (37) 

2 1

1
z

R C
             (38) 

1 2
2

1 2

1
p C C

R
C C

 



           (39) 

For the sake of illustration, we compare an ideal op amp to a real op amp with 50-dB open-loop gain (a TL431 

for instance) when the compensator must meet the following targets: fc = 10 kHz with a 20-dB compensating 

gain at this frequency and the phase boost must be 65°. R1 and Rlower are calculated for a 12-V output and a 

2.5-V reference voltage. The two dynamic responses of equations 31 and 36 appear in Fig. 15.  

The deviation of the crossover gain and phase boost are negligible. However, the gain in equation 31 is 35 dB at 
a 120-Hz frequency while it amounts to 45 dB with (36). Finally, the quasi-static gain is only 36.4 dB (66) for 

the finite-AOL option while it is infinite with the perfect op amp.  

What is the impact of these numbers? A lack of gain at twice the mains frequency will affect the ability of the 

control system to reject the rectification ripple. The output variable may be polluted by this component, 

especially in voltage-mode control. Also, there can be a significant static error in the controlled variable if the 

plant gain is low as well. But if you now select an op amp having a higher AOL, 80 dB for instance, the 

discrepancies disappear and both curves are very close to each other as shown in Fig. 16. 
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Fig. 15. The Bode plot of the type-2 compensator in which we consider the influence of the open-
loop gain AOL and the low-side resistor Rlower. The response of the compensator that accounts for 

finite AOL does not differ too much from the response produced by the original perfect equation 

(the curve labeled “infinite AOL”) except at low frequencies. 
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Fig. 16. When the open-loop gain AOL increases, both curves nicely superimpose. The quasi-static 

gain increases to 66.3 dB versus 36 dB with the 50-dB AOL gain. 

Conclusion 

This first part shows the effect of the open-loop gain in a compensator featuring a non-ideal operational 

amplifier. When the op amp is no longer considered perfect, you can see the effects of a weak open-loop gain in 
the low-frequency range of the dynamic response and assess performance degradation brought by this 

condition.  

In this first part, we have only considered the open-loop gain impact. In part 2, we will complicate the analysis 

by adding the two low- and hi-frequency poles that integrated circuit designers naturally place in an operational 
amplifier to ensure its stability. 
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For further reading on power supply compensation, see the How2Power Design Guide, and do a keyword search 

on “compensation.” 
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