

ISSUE: February 2017

## Eddy-Current Effects In Magnetic Design (Part 5): Winding Design Optimization

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize

In Part 4, Dowell's equation was presented. It provides a graphic way of determining winding loss for a given wire size and number of layers. Having that capability, we now progress to the problem of how to optimize wire size for minimum winding resistance.

Given the two winding design parameters,  $\xi$  and M (with frequency, f given), the winding design goal is not to minimize  $F_R$  in itself but to minimize winding loss,

$$\overline{P}_{w}(\xi) = R_{w}(\xi, M) \cdot \widetilde{i}^{2} = F_{R}(\xi, M) \cdot R_{w0}(\xi) \cdot \widetilde{i}^{2}$$

To achieve this goal, we will transition from  $F_R$  to  $F_r$ , which is proportional to  $\overline{P}_w(\xi)$ . Whereas  $F_R$  is the resistance ratio with constant wire size and varying frequency,  $F_r$  instead has constant frequency with varying wire size. We can thereby find the optimal wire size using  $F_r$ .

Ultimately, we will find there are two possible solutions for minimizing eddy-current effects —a low- $\xi$  solution involving a smaller wire size and a high- $\xi$  solution involving a larger wire size. Each solution serves to minimize the contribution of eddy-current effects to winding losses, but each will be applicable under different winding requirements and operating conditions. However, we'll begin by analyzing the other resistive component of winding loss,  $R_{w0}$ .

## The Path To Lowest Winding Loss

 $P_w$  in the equation above is minimized by minimizing both  $F_R(\xi, M)$  and static (0 Hz) resistance,  $R_{w0}$ , though these reductions conflict. As square or round wire size increases,  $\xi_h$  or  $\xi_r$  increases, and  $F_R$  increases, whereas  $R_{w0}$  decreases with larger wire.  $R_{w0}$  is expressed for foil in  $\xi$  as

$$R_{w0}(\xi) = \frac{\rho \cdot l_w}{A_c} = \frac{\rho \cdot l_w}{w \cdot h} = \frac{\rho \cdot l_w}{w \cdot \delta \cdot (h/\delta)} = \frac{R_{\delta f}}{\xi} , \ R_{\delta f} = \frac{\rho \cdot l_w}{w \cdot \delta}$$

 $R_{w0}$  is expressed for square wire in  $\xi_h$  as

$$R_{w0}(\xi_h) = \frac{\rho \cdot l_w}{A_c} = \frac{\rho \cdot l_w}{h^2} = \frac{\rho \cdot l_w}{\delta^2 \cdot \left(\frac{h}{\delta}\right)^2} = \frac{R_{\delta h}}{\xi_h^2} , \ R_{\delta h} = \frac{\rho \cdot l_w}{\delta^2}$$

 $R_{W0}$  is expressed for round wire in  $\xi_r$  as

$$R_{w0}(\xi_r) = \frac{\rho \cdot l_w}{A_c} = \frac{\rho \cdot l_w}{\pi \cdot r_c^2} = \frac{\rho \cdot l_w}{\pi \cdot \delta^2 \cdot \left(\frac{r_c}{\delta}\right)^2} = \frac{R_{\delta r}}{\xi_r^2} , \ R_{\delta r} = \frac{\rho \cdot l_w}{\pi \cdot \delta^2}$$

 $R_{\delta x}$  is the resistance of a conductor of cross-sectional area set by the skin depth.  $R_{\delta x}$  and  $\xi_x$  vary the same with f (in  $\delta$ ), making  $R_{w0}$  independent of f and static (hence the 0 subscript.) At a fixed f,  $R_{\delta x}$  is constant and  $\xi_x$  is only a function of the conductor sizing dimension (h or  $r_c$ ).  $R_{\delta x}$  is thus independent of  $\xi_x$  at a fixed f.



For foil or wide circuit-board power traces (w >> h), w is independent of  $\delta$ , and only the h dimension affects  $\delta$ . Foil  $R_{w0}$  varies only with  $1/\xi$ . For square and round wire, both of the wire cross-sectional dimensions vary with the skin-depth dimension, resulting in  $R_{w0}$  that varies by  $1/\xi_x^2$ .

To find foil thickness for minimum  $R_w$ , it is expressed for foil (or single, wide rectangular conductors such as circuit-board traces) by substituting the above expression for  $R_{w0}$  into

$$R_w(\xi) = F_R(\xi) \cdot \frac{R_{\delta f}}{\xi} = \frac{F_R(\xi)}{\xi} \cdot R_{\delta f} = F_r(\xi) \cdot R_{\delta f} \Longrightarrow F_r(\xi) = \frac{F_R(\xi)}{\xi}, \text{ foil}$$

For square and round wire,

$$R_w(\xi) = F_R(\xi) \cdot R_{w0} = F_R(\xi) \cdot \frac{R_{\delta x}}{\xi_x^2} = \frac{F_R(\xi)}{\xi_x^2} \cdot R_{\delta x} = F_r(\xi_x) \cdot R_{\delta x}$$

where  $\xi_x$  is either  $\xi_h$  or  $\xi_r$ ,  $R_{\delta x}$  is either  $R_{\delta h}$  or  $R_{\delta r}$  and where  $F_r$  is  $R_w$  normalized to  $R_{\delta x}$ , a constant that varies with wire size;

$$F_r(\xi_x) = \frac{F_R(\xi)}{\xi_x^2}$$
, x = r for round wire, x = h for square wire

We can find the conductor size corresponding to a minimum  $R_w$  because  $\xi_x$  varies only with conductor size at a fixed *f*. Where  $F_r(\xi_x)$  is minimum, so is  $R_w(\xi)$ . Layer plots of  $F_r(\xi_r, M)$  are shown below in Fig. 1 for round wire.



Fig.1. Constant-frequency resistance factor,  $F_r$ , plotted against round-wire  $\xi_r$  with layers, M = 1 to 8 (top plot) and isolated-wire  $F_{rw}$  (bottom plot) for reference. In the low- $\xi_r$  region,  $F_r$  asymptotically decreases by  $1/\xi_r^2$ , reaches a minimum at  $F_{rv}(\xi_{rv})$ , increases in the medium- $\xi_r$  region, and decreases again in the high- $\xi_r$  region.

The same graph as Fig. 1 with logarithmic scales is shown in Fig. 2.





Fig. 2. Here the graph from Fig. 1 is plotted with log-log scales to show asymptotic slopes of plots: -2 for low- $\xi_r$ ; -1 for high- $\xi_r$ ; and in the medium- $\xi_r$  region, the slope increases by about  $(M/3)^2$ . The plot of M = 8 has twice the slope of  $F_r(\xi_r, 4)$ .  $\xi_{rv}$  sets the lower end of the medium- $\xi_r$  region and decreases with M while the upper end is at  $\xi_r \approx 1.5$  for all layers.

 $F_r$  is asymptotic with a line of -2 slope for low  $\xi_r$  and at high  $\xi_r$  is asymptotic with a -1 slope. The minima of  $F_r$ , or  $F_{ropt}$ , also lie along a line with a -2 slope. The round-wire plot of Fig. 3 is expanded along the  $\xi_r$  axis for the low- and medium-frequency regions.



Fig. 3. Round-wire  $F_r$  and  $F_{rw}$  plots, expanded along the  $\xi_r$  axis.

Small wire has a lower fraction of conductive area (lower  $k_{pw}$ ), and higher  $R_{w0}$ , despite low eddy-current effects. As wire size (and  $\xi_x$ ) increases,  $R_{w0}$  decreases to a minimum  $R_w$  valley point at  $\xi_v$  before  $F_r$  begins to increase in the medium- $\xi_r$  region.  $F_r$  increases to a peak value, the peak being greater with larger M. At an even larger  $\xi_r$  (and wire size), the decrease in  $R_{w0}$  dominates, and  $F_r$  decreases until at the *critical* value,  $\xi = \xi_{cr}$ ,  $F_r(\xi_{cr}) = F_r(\xi_v)$ .



Above the  $\xi_{cr}$  value,  $R_w$  is reduced even further, though at the expense of a larger required winding window area,  $A_{ww}$  (and perhaps a larger core) to accommodate the larger wire size. Round-wire  $F_r$  graphs are plotted against wire gage in Figs. 4 through 8. (Additional plots at other frequencies are given in *Power Magnetics Design Optimization*, D. Feucht, <u>www.innovatia.com</u>.)



Fig. 4. Round-wire  $F_r$  and  $F_{rw}$  plots, expanded along the  $\xi_r$  axis; f = 100 kHz,  $R_{\delta r}/I_w = 125$  m $\Omega/m$ , Cu, 80°C.



Fig. 5. Round-wire  $F_r$  and  $F_{rw}$  plots, expanded along the  $\xi_r$  axis; f = 150 kHz,  $R_{\delta r}/I_w = 188$  m $\Omega/m$ , Cu, 80°C.





Fig. 6. Round-wire  $F_r$  and  $F_{rw}$  plots, expanded along the  $\xi_r$  axis;  $f_s = 200 \text{ kHz}$ ,  $R_{\delta r}/I_w = 251 \text{ m}\Omega/m$ , Cu,  $80^{\circ}C$ .



Fig. 7. Round-wire  $F_r$  and  $F_{rw}$  plots, expanded along the  $\xi_r$  axis;  $f_s = 350$  kHz,  $R_{\delta r}/I_w = 440 \text{ m}\Omega/m$ , Cu,  $80^{\circ}C$ .





Cu, 80°C.

What  $F_r$  shows is that either sufficiently large or optimally small wire both minimize eddy-current effects. The low- $\xi$  solution is usually preferred because of the smaller winding area,  $A_{WW}$ , and a lower winding material cost.

As layers increase,  $\xi_v$  decreases somewhat. At 8 layers,  $\xi_{rv}(8) \approx 0.41$ —about a #38 wire at 350 kHz. As wire size decreases, for the same  $A_{ww}$ , M must increase. Eventually,  $\xi_{rv}$  is of wire above #40 AWG, which (like wire below #16 AWG) becomes hard to work with. Foil for large wire and commercial Litz wire for small wire become alternatives.

 $R_w$  is calculated from the above  $F_r$  plots for AWG values of round Cu wire using

$$\frac{R_{\delta r}}{l_{w}} \approx \left(1.256 \frac{\mu \Omega}{\mathbf{m} \cdot \mathbf{Hz}}\right) \cdot f \text{ , round-wire, Cu, 80 °C}$$

The winding resistance is

$$R_{w}(AWG, M, f) = F_{r} \cdot (R_{\delta r} / l_{w}) \cdot l_{w}$$

As a design example using the Fig. 5 graph for f = 150 kHz, for M = 6 layers (higher dash-dot curve),  $F_r$  is minimum at a value of 9.5 at  $\xi_{rv} \approx 0.45$ . this corresponds to a skin depth of

$$\delta \approx \frac{73.5 \text{ mm}}{\sqrt{f / \text{Hz}}} = \frac{73.5 \text{ mm}}{\sqrt{150 \cdot 10^3}} = 0.19 \text{ mm}, \text{ Cu}, 80 \,^{\circ}\text{C}$$

and an optimal round wire size of

$$r_c = \xi_r \cdot \delta \approx \frac{\xi}{1.55} \cdot \delta = \frac{(0.7) \cdot (0.19 \text{ mm})}{1.55} = 0.086 \text{ mm}$$

For this  $r_c$ , a wire table gives a wire size between #34 and #33 AWG. This size agrees with the 150-kHz plot minimum of  $F_r$  plotted against wire gage. For the high-frequency solution, follow the  $F_r(\xi_v) = 9.5$  value across



the graph to where the M = 6 curve is intersected at  $\xi_{rcr} \approx 3.9$ .  $\xi_{rcr}$  corresponds to a wire  $r_c = (3.9) \cdot (0.19 \text{ mm}) = 0.741 \text{ mm}$  or about #15 AWG, with 70 times larger wire area! It is likely that this solution will require a larger core to accommodate the larger wire. Hence, the low- $\xi_r$  solution is usually preferred. For low-turns windings and high frequency, such as in planar transductors, the high- $\xi_r$  solution becomes feasible.

On the  $F_r$  graphs, as M increases,  $F_r$  and  $P_w$  minimums increase at  $\xi_v$  values. As M increases, the variation in  $F_r$  in the medium-frequency region also increases with  $\xi$ , with higher  $F_r$  peaks and higher values of  $\xi_{cr}$ . The medium-frequency region also widens as M increases. Consequently, reduction of layers is an important design consideration because even at  $\xi_v$ , the minimum  $R_w$  increases with M. With smaller wire, additional strands reduce the increasing  $R_w$  per strand, yet eventually an increasing number of strands of decreasing size is suboptimal because strand packing factor decreases, and more of the winding area becomes winding insulation. For the same winding area, using the minimum number of layers is generally optimum.

*Litz wire* is produced by specialized manufacturers as a multi-stranded bundle of tiny wires with strands bundled together (by weaving instead of twisting) to minimize the layering effect. The field cancellation geometry of the weave is somewhat related to the interleaving of winding layers that sequentially alternates primary and secondary windings to reduce accumulated field-referred current, *Ni*. Litz wire has no opposite-polarity currents in strands, but configures bundles of twisted strands for minimization of eddy-current effects over the pitch length.

In summary, there are two solutions to the  $R_w$  minimization problem, a low- $\xi$  and a high- $\xi$  solution. The low- $\xi$  solution results from the minimization of frequency effects by operation in the low- $\xi$  region, using multiple parallel strands of wire to compensate for the low  $R_{w0}$  of their smaller wire size. The high- $\xi$  solution results from the dominance of decreasing  $R_{w0}$  in the high- $\xi$  region over the proximity effect. Between  $\xi_v$  and  $\xi_{cr}$  is the medium-frequency region dominated by the proximity effect. Only for  $M \leq 2$  is it feasible to operate in this region.

## References

- 1. "<u>Eddy-Current Effects In Magnetic Design (Part 1): The Skin Effect</u>" by Dennis Feucht, <u>How2Power</u> <u>Today</u>, August 2016 issue.
- 2. "<u>Eddy-Current Effects In Magnetic Design (Part 2): The Proximity Effect</u>" by Dennis Feucht, <u>How2Power</u> <u>Today</u>, September 2016 issue.
- 3. "<u>Eddy-Current Effects In Magnetic Design (Part 3): Conductor Cross-Sectional Geometry</u>" by Dennis Feucht, <u>How2Power Today</u>, October 2016 issue.
- 4. "<u>Eddy-Current Effects In Magnetic Design (Part 4): Dowell's Formula</u>" by Dennis Feucht, <u>How2Power</u> <u>Today</u>, October 2016 issue.

## **About The Author**



Dennis Feucht has been involved in power electronics for 30 years, designing motordrives and power converters. He has an instrument background from Tektronix, where he designed test and measurement equipment and did research in Tek Labs. He has lately been working on projects in theoretical magnetics and power converter research.

For more on magnetics design, see these How2Power Design Guide search results.