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Understanding Op Amp Dynamic Response In A Type-2 Compensator (Part 2): The 

Two Poles  

by Christophe Basso, ON Semiconductor, Toulouse, France 

In part 1 of this article, we have shown the impact of the operational amplifier open-loop gain AOL on the 

response of a type-2 compensator. Pushing the analysis further, a closer look at the magnitude and phase 

response of an operational amplifier reveals the presence of two poles—one low frequency and one high 
frequency. While the presence of these poles can be neglected in low-bandwidth compensator designs, you 

must account for the distortion they produce when you need gain and phase boost in high-bandwidth systems.  

In this second part, we will see how to determine the transfer function of the type-2 compensator accounting 
for these poles and how they distort the response of the filter. As we will see, the op amp’s poles and finite gain 

produce distortions in the gain and especially the phase characteristics of the compensator. Fortunately, these 

distortions can be minimized by appropriate selection of the op amp and we’ll present a method for doing so. 
Finally, we’ll apply our more-complete transfer function for the type-2 compensator in a design example 

consisting of a high-frequency, current-mode-controlled buck converter. 

Two Poles In The Op Amp 

For stability reasons, op amp designers implement what is called dominant-pole compensation. It consists of 

placing a pole at low frequency so that gain roll-off to 1 (0 dB) occurs at frequency fc before a second high-

frequency pole is placed, usually at 2fc. 

 

 
Fig. 1. The open-loop dynamic response of an op amp reveals the presence of two poles (fp1 and 

fp2.) 

 

This is what Fig. 1 illustrates for a classical µA741 in which you can observe a crossover frequency at 1 MHz. In 

this case, a low-frequency pole exists around 5 Hz while a second pole manifests itself at approximately 2 MHz. 
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Please note that this is a typical response with an open-loop gain AOL of 106 dB. The open-loop gain is not a 

precisely-controlled parameter and it can vary quite significantly. The datasheet stipulates a gain moving from 

15,000 (83.5 dB) to 200,000 (106 dB) across the whole temperature range (-55 to 125 °C). So expect this 
curve to shift as dispersions occur. 

A simple Laplace expression can depict this two-pole open-loop response shown in Fig. 1: 
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It is confirmed by the Mathcad plot appearing in Fig. 2. 

 
Fig. 2. The op amp features a low-frequency pole and a second pole placed beyond the 0-dB 

crossover frequency. 

A Simple SPICE Model For The Op Amp 

A SPICE model mimicking the frequency response of Fig. 2 can be built quite easily. As drawn in Fig. 3, it uses a 

voltage-controlled current source G1 featuring a transconductance gm followed by a resistor ROL to ground in 

parallel with capacitor C1. Across ROL, the transfer function to the inverting pin Vinv is simply: 
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If we now buffer the voltage and place a second pole with resistor R2 and capacitor C2, we obtain the complete 

transfer function we want: 
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Component values have been automated on the left-side of Fig. 3 and once the simulation is run, the right-side 
displays the obtained magnitude/phase diagram. This is a simplified op amp model but it can be used for a first-

order analysis. Later, it can be upgraded to model more specific characteristics such as voltage clamps or a 

slew-rate circuit as described in reference [1].  

Please note the presence of LoL and CoL in the schematic. They are there to fix the op amp output voltage at 

2.5 V as the part runs open loop. Here, because there are no supply rails, we could run a simple ac analysis 

without caring about the dc bias point.  
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Fig. 3. A simple SPICE circuit lets you build an op amp featuring an open-loop gain and two poles. 

However, if you plan to look at the response of a more comprehensive model including supply rails, then this 
simple circuit will prevent the integrated circuit from railing up or down as you attempt to manually fix its dc 

operating point. LoL is a short circuit at the beginning of the simulation and helps fixing the operating point with 

E3 and source Vref.  

Once an ac sweep starts through CoL, LoL blocks the modulation from E3 and the circuit fixing the operating 

point becomes silent. This is a classical trick used with average models to run an open-loop gain analysis while 

making sure the closed-loop bias point is established to the desired output value. This simple SPICE model will 

help to test the mathematical expression obtained through our analysis. 

The Type-2 Compensator Featuring The Two-Pole Configuration 

Now that we know our op amp features two extra poles, we can update the sketch we originally used in part 1 

of this article. Fig. 4 shows the newly-formed type-2 compensator now including the op amp internal 

characteristics. 

  
Fig. 4. The updated circuit accounts for the two poles present in the operational amplifier. 
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The output voltage VFB is the error voltage  multiplied by the op amp open-loop transfer function: 
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The error voltage can be found using the superposition theorem alternatively setting Vout and VFB to 0 V: 
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If we now substitute (5) into (4) and rearrange the expression, we find: 
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With Z1(s) equal to: 
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Please read the appendix at the end of this paper to learn how I derived this expression in simple steps using 

fast analytical techniques. 

This equation is awfully intractable (i.e. offering no analytical insight into circuit behavior by itself.) But 

fortunately, it is not a problem for Mathcad. We can verify if it is correct by comparing its dynamic response 

with that of the SPICE model. We assumed the following component values: 
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The SPICE circuit featuring the type-2 configuration is shown in Fig. 5. 
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Fig. 5. The complete type-2 SPICE model now accounting for the op amp’s dynamic response. 

Please note the dc bias point set to 12 V given the 2.5-V reference voltage Vref2 now biasing the 

NINV pin. 

As confirmed by Fig. 6, responses between Mathcad and SPICE are identical confirming the validity of the 
equation. 

 
Fig. 6. The plots delivered by Mathcad perfectly superimpose on those produced by SPICE. 

Distortion Of Characteristics 

The component values adopted in the Fig. 5 simulation come from a type-2 compensator intended to build a 

65° phase boost with a 20-dB gain at a 10-kHz crossover frequency. If we now compare the ideal type-2 

response given by equation 36 in the first part of this article with the response of the type-2 circuit using a 

µA741 (106 dB AOL with two poles, 5 Hz and 2 MHz), you will notice some discrepancies as indicated by Fig. 7. 
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Fig. 7. Building the type 2 with a µA741 exhibiting its highest open-loop gain already induces 

phase boost distortion. 

In this picture, we can observe a slight gain deviation at 10 kHz and the 20-dB target is missed by 2.2 dB. Not 

a big deal actually. But what is more important is the 65° phase boost you were expecting with the formula for 
the ideal op amp. At 10 kHz, the phase boost provided by the circuit featuring the real op amp is only 44.6° or 

a difference of 20.4°. This is going to reduce the final phase margin by that amount.  

But the worst is yet to come. If you consider the open-loop gain variation as indicated by the datasheet, what if 

AOL drops to 83.5 dB, the specified minimum for open-loop gain? Fig. 8 speaks for itself: the 20-dB gain at 10 

kHz is missed by 17 dB while the phase boost collapses to 6.7°. No need to explain why the system’s stability is 

at stake with this last value. The SPICE simulation from Fig. 9 confirms this data with the three different plots 
gathered in the same graph. You can see the deleterious impact of the open-loop gain variations. 

 
Fig. 8. If the open-loop gain now collapses to 83.5 dB as detailed in the op amp datasheet, the 

phase boost of the compensator almost disappears. 
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Fig. 9. Variations in the op amp open-loop gain induce severe gain and phase distortions. 

If we now change the type-2 specifications, meaning we no longer need a gain at 10 kHz but a 10-dB 

attenuation at fc with the same 65° phase boost, the phase boost distortion is less pronounced with the low 

open-loop gain (see Fig. 10.) 

 

Fig. 10. If the type-2 circuit is modified to attenuate by 10 dB rather than amplifying at the same 

10-kHz crossover frequency, the target for phase boost is still not attained but we’re closer to the 
desired result. 

The mid-band gain obtained in this configuration is -11 dB (versus the -10-dB target) while the phase boost just 
hits 49° (versus the original 65° target.) 

Type-2 Response And Open-Loop Gain Plots 

The classical recommendation for making sure the op amp internals do not alter the compensator response is to 

superimpose on the same plot the theoretical type-2 magnitude and the op amp open-loop response.[2] In Fig. 
11, the left-side plots correspond to our first attempt to build a type 2 compensator featuring a 65° phase boost 

and a 20-dB gain at 10 kHz. In this graph, the op amp magnitude intersects with that of the type 2 
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compensator and the conflict ends up destroying the characteristics we wanted (producing almost 60° phase 

error in the end.) At first sight, it is clear that this intersection shows that either the selected op amp is not 

adequate or the goals we set with the type-2 compensator were too ambitious. 

The right-side of Fig. 11 seems to indicate that we should be good to go when designing that type-2 circuit 

which no-longer features gain but attenuation at the 10-kHz crossover. Our calculations unfortunately indicate 

otherwise as confirmed by the final 17° phase error. 

 

 
Fig. 11. In the plots on the left, you clearly see that both responses intersect and degradation 

occurs. In those on the right, there is no intersection in the magnitude plots but the final result is 

also distorted. 

One approach suggested in reference [2] recommends that we select an op amp featuring a gain-bandwidth 

product (GBW) greater than the 0-dB crossover frequency of the adopted type 3 compensator. You can see 

that, unfortunately, it does not apply to Fig. 11: On the left side, the 0-dB crossover for the type 2 is around 
400 kHz while on the right side, we want an attenuation and not a gain.  

Therefore, I propose a slightly different rule-of-thumb in which the op amp open-loop response must “fly” by 20 

dB above the type-2 compensation at 20fc. This is what Fig. 12 illustrates. This graphical approach is a first step 

in determining what GBW product your op amp must exhibit to keep the wanted phase boost and gain targets 
within acceptable limits. 
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Fig. 12. As a first step in selecting the op amp, we recommend setting the open-loop response at 

least 20 dB above the second -1-slope of the type-2 compensator. 

You first calculate the type 2 magnitude in dB at 20fc to which you add 20 dB. Then you calculate the 

corresponding op amp open-loop gain crossover frequency or GBW product: 

 1020log 20 20
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In Fig. 11 left side, (8) gives a GBW product of 4.4 MHz while it suggests a GBW product of 150 kHz for the 

second case. Applying this strategy to the first example leads to the selection of an op amp having an open-
loop gain of 90 dB with a low-frequency pole located at 150 Hz or an 80-dB open-loop gain with a 450-Hz low-

frequency pole. Do not reduce the open-loop gain below 70 dB[2] to keep the steady-state error within 

acceptable limits. When this strategy is applied, the mid-band gain is 19.5 dB while the phase boost is 60°.  

In the second example, (8) recommends a GBW of 140 kHz obtained with an 80-dB open-loop gain and a 15-Hz 

low-frequency pole. The mid-band gain dispersion is 0.4 dB and the phase boost is 56° or a 9° deviation. 
Pushing the low-frequency pole to 30 Hz reduces the gain dispersion to 0.2 dB and the phase boost error to 

4.4°. 

The formula in (8) is given to get you started in the selection of the GBW product of a suitable op amp. It is 
based on observations and iterations done to find suitable GBW products in several cases. I could have tried to 

extract a possible GBW product from (6)—for instance by ignoring the high-frequency pole contribution—to 

meet specific deviations from response of the original perfect type-2 compensator but I am not sure a 
meaningful expression could have been identified.  

Once you have the suggested GBW in hand, look up the datasheets of operational amplifiers and identify a 

suitable component. Then, plug AOL and the low-frequency pole into the Mathcad sheet [3] and check for the 

incurred target deviations. Be sure to explore minimum values so that deviations remain acceptable in the 

worst case. 

Compensation Example: A High-Frequency Current-Mode Buck Converter 

Assume that we have designed a 5-A buck regulator converting a 3.7-V battery down to 1.5 V and switching at 

a 1-MHz frequency. The output capacitor is 180 µF and features an equivalent series resistance (ESR) rC of 3 

m. Assume we want a 50-mV drop on the output when the load changes from 1.5 A to 5 A. The power supply 

output impedance must thus be equal to: 
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50
14.3 mΩ

5 1.5

out

out

out

V m
Z

I


  
 

         (9) 

It is possible to show that the small-signal closed-loop output impedance at the crossover frequency fc is 

dominated by the capacitor impedance providing that its ESR is small enough: 

1
If @

2outC C c out out

c out

r Z f V I
f C

           (10) 

From the required drop, we can estimate what crossover frequency is needed considering the 180-µF capacitor 

and the desired 14.3-m output impedance: 

1 1
62 kHz

2 2 3.14159 14.3 180
c

out out

f
Z C m u

  
  

      (11) 

Some will object that this is an approximation for a small-signal analysis and large-signal response will be 

different. This is true but experience shows that final results are not that far from what is calculated. Of course, 

when ESR and ESL (parasitic inductance) enter the picture, the result drastically differs but this first-order 
approach is an interesting starting point. Furthermore, this method analytically suggests a crossover frequency 

compared to the classical recommendations of Fsw/5 or Fsw/10 which are often pulled out of thin air. 

We have selected a crossover frequency fc of 62 kHz. To compensate such a converter, we first need the power 

stage dynamic response, it is the starting point of the analysis. There are several ways to get it: a) use the 
control-to-output transfer function H(s) and get a Bode plot from it b) build a simulation setup using an average 

model c) build a prototype in the laboratory and extract the response with a network analyzer or d) build a 

switching model and extract the ac response with Simplis or PSIM. We have adopted strategy b) as shown in 
Fig. 13. 

 
Fig. 13. An average model helps us build a current-mode converter quite quickly. 
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From the magnitude plot, we see that the mid-band gain must be 25.5 dB if we want to crossover at 62 kHz. 

The 86° phase lag read at crossover (pfc) requires a phase boost of the following value if we target a 70° 

phase margin (pm): 

 Boost pm pfc 90 70 86 90 66                (12) 

Calculations from the Mathcad sheet suggest a pole placed at 291 kHz with a zero located at 13.2 kHz. 

According to (8), a 50-MHz GBW amplifier must be selected. Looking up the various op amp datasheets, we 

found the LT1208. This device features a typical open-loop gain of 7000 (77 dB), which can drop to 2000 (66 

dB) at its minimum value. Its typical gain-bandwidth product is 45 MHz and drops to 34 MHz at a 5 V supply. 

The low-frequency pole is therefore placed at 34 MHz/7k  4.8 kHz. 

Fig. 14 displays the type-2 Bode plots obtained with two different open-loop gains. The 77-dB gain gives a 45-

MHz GBW and the deviation in gain (as indicated by ΔG) is small. When AOL drops to 66 dB (the minimum 

specification), the gain deviation remains acceptable but the phase boost diverges from the target by 10.7°. 

 
Fig. 14. The open-loop gain deviation affects the effective phase boost you will have at the end. 

The Op Amp In the Buck Converter 

We can now close the loop and capture the selected op amp characteristics in our simulation schematic, which 

is updated with the real model (at least with its AOL and the two poles). 
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Fig. 15. The operational amplifier now features the two low- and high-frequency poles. 

From this schematic, we can plot the open-loop gain T(f) and see how the changes in the open-loop affect the 
dynamic response. The results appear in Fig. 16. As expected, some variation occurs in the crossover frequency 

and the phase margin. 

 
Fig. 16. The dynamic response is affected by the open-loop gain variations. In the worst case 

(66-dB AOL), the phase margin drops to around 60° which is acceptable (dotted lines). 
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From the Fig. 15 simulation circuit, we can run a transient load step and check the response for the two 

different open-loop gains. The results are given in Fig. 17. 

 
Fig. 17. The lowest open-loop gain gives a 44-mV deviation while the typical value induces a 40-

mV drop (dotted lines correspond to the 66-dB AOL) 

The drop is within the specifications for both open-loop gain values. Of course, this is a simplified approach and 

given the error voltage deviation on the op amp (1.6 V), the slew-rate must be part of the whole analysis and 

its impact assessed on the transient response. 

Conclusion 

This second part has shown some of the effects brought by the op amp dynamic response on the compensator 

performance. When a large bandwidth is expected, you can no longer neglect these contributions to the 

compensator dynamic response. Superimposing the ideal type-2 response you want with that of the selected op 
amp open-loop magnitude plot and checking for overlap is one way to go. However, we have seen a case where 

the absence of overlap leads to a significant phase boost distortion in the end.  

By ensuring a significant distance between the op amp open-loop response and that of the perfect type 2, you 
can pick a gain-bandwidth product and check how it impacts the desired response with the given formula. A 

comprehensive stability analysis must consider the whole loop gain by affecting tolerances of all components, 

including the op amp internals. With the complete type-2 transfer function from (6), you are all set to push the 

analysis one step further. 
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Appendix: Impedance Calculation 

To determine the impedance given by (7), we can apply the Fast Analytical Techniques thoroughly described in 

reference [4]. The schematic appears in Fig. 18. To obtain the impedance, we use a current source IT injecting 

current into the network. IT is the stimulus while VT is the response. The transfer function we want is the 

relationship linking the response to the stimulus. To ease the analysis, we have installed a dummy resistance 

Rinf across the measurement terminals. We will see in a moment the reason of it. 

 
Fig. 18. There are two capacitors, this is a second-order circuit. 

The transfer function of such a network can be put in the following form: 

 
 

 
0

N s
Z s R

D s
            (13) 

For a second-order system, we can show that the denominator obeys the following formula: 

     2 2 1

1 2 1 2 1 21 1D s b s b s s s                 (14) 

1 and 2 are the time constants obtained when all energy-storage elements—the capacitors and inductors—

remain in their dc state (capacitors are open-circuited while inductors are shorted). The notation 
1

2  means that 

the element in time constant 1 (the superscripted number) is put in its high-frequency state (capacitors are 

short-circuited while inductors are open-circuited) while you determine the resistance seen from time constant 
2 element’s terminals.  

Conversely, 
2

1  means that the element in time constant 2 (the superscripted number) is put in its high-

frequency state (capacitors are short-circuited while inductors are open-circuited) while you determine the 

resistance seen from time constant 1 element’s terminals. Then you assemble these time constants to form 

D(s) as in (14). 

First we look at the resistance offered from the energy-storage element’s terminals for s = 0. In dc, we open all 

capacitors and short inductors (if any). SPICE does the same when determining a bias point prior to starting 

any type of analysis, .TRAN or .AC. In our head, we see that if we remove the capacitors, the resistance offered 

by the input terminals is fixed by Rinf, hence its presence to avoid an infinite term: 

0 infR R            (15) 

1C

2C
2R 1 ?Z s

1C

2C
2R

infR

TV

TI
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Then, we determine the resistance R offered by each capacitor’s terminals while its counterpart is left in a dc 

state (open or removed from the circuit). We obtain the small drawings of Fig. 19. The time constant is defined 

by  = RC. 

 
Fig. 19. You now evaluate the resistance offered by each capacitor’s terminals while they are in 

their dc state (removed from the circuit). 

Without writing a single line of algebra, we can inspect the figure and “see” the resistance observed from the 

capacitor’s terminals. We have: 

 1 1 2 infC R R             (16) 

and 

2 2 infC R             (17) 

Now that have the dc time constants, let’s determine the higher frequency one as shown in Fig. 20. For 
1

2 , 

capacitor C1 is replaced by a short circuit and you look at the resistance offered by capacitor C2’s terminals. 

 
Fig. 20. Capacitor C1 is replaced by a short circuit: what is the resistance “seen” from C2’s 

terminals? 

The time constant is immediate and equal to: 

 1

2 2 inf 2||C R R            (18) 
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Should we evaluate 2

1  instead, we would find 

2

1 1 2C R             (19) 

We have all the terms to form D(s): 

           2 1 2

1 2 1 2 1 2 inf 2 inf 1 2 inf 2 inf 21 1 ||D s s s s C R R C R s C R R C R R                 (20) 

The numerator can be found by inspection. If you remember what I said in part 1, zeros are found when a 

specific value of s makes the response disappear in a transformed network (where is C is replaced 1/sC) despite 

the presence of a stimulus. In Fig. 18, the response is VT measured across the current source. For VT to become 

0 V, there must be a transformed short circuit appearing in the circuit. This is the case if: 

2 1
2

1 1

11
0z

z z

s R C
R

s C s C


            (21) 

This is true if: 

2 1

1
zs

R C
             (22) 

We are all set, the complete transfer function is shown below: 

 
     

2 1

1 inf 2

1 2 inf 2 inf 1 2 inf 2 inf 2

1

1 ||

sR C
Z s R

s C R R C R s C R R C R R




      

    (23) 

In the denominator, factor Rinf and obtain: 

  2 1

1 inf

22 2 2
inf 1 2 1 2

2inf inf inf

inf

1

1
1 1

1

sR C
Z s R

R R R
R s C C s C C

RR R R

R




 
      

         
     

  

    (24) 

Simplify and have Rinf approach infinity. The final expression is therefore: 

 
 

2 1

1 2

1 2 1 2 2

1 sR C
Z s

s C C s C C R




 
         (25) 

If you now factor R2C1 in the numerator, you have a so-called low-entropy expression featuring an inverted 

zero in the numerator: 

  2 1 2 1

1

1 21 2
2

1 2

1
1

1

R C sR C
Z s

C CC C
sR

C C









         (26) 
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It can be further rearranged in the following form: 

 1

1

1

z

mb

p

sZ s Z
s











          (27) 

2 1

1 2

mb

R C
Z

C C



           (28) 

2 1

1
z

R C
             (29) 

1 2
2

1 2

1
p C C

R
C C

 



           (30) 

The leading term (28) still has the dimension of a resistance but is no longer the value for s = 0. It is the 

plateau region or mid-band resistance you see in Fig. 21 in which we gathered all expressions to test their 

individual responses. They are all identical. 

 
Fig. 21. Mathcad confirms that raw and final expressions are identical. 
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 1Z f  1Z f
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The Fast Analytical Circuits Techniques show how you can break a circuit into small individual sketches and 

solve each sketch independently. When inspection is possible, the result is obtained quite quickly and leads to a 

well-ordered form. This is the power of the approach and I encourage you to acquire the skill as you will save 
valuable time when determining a complicated transfer function.  

To whet your appetite, look at Fig. 22. You will recognize a type-3 compensator. Without writing a single line of 

algebra, I can tell you that the response VFB disappears when Z1 and Z2 respectively become a transformed 

short and a transformed open. Z1 has already been evaluated in (26) and contributes a zero equal to: 

1

2 1

1
z

R C
             (31) 

To prevent the stimulus Vout from forming the response VFB, the second option is that Z2 becomes an open-

circuit. In other words, for s = sz2, the denominator of its impedance expression cancels. 

 
Fig. 22. A type-3 circuit is a third-order active filter. 

To determine Z2’s impedance (isolate it from the whole circuit), we can imagine in our head a current source IT 

connected across R1 as shown on the right side of Fig. 18. For s = 0, the resistance you would “see” across the 

current source terminals is R1 (C3 is open-circuited in dc). The time constant when the excitation (the current 

source) is reduced to 0 A (a 0-A current source simply disappears from the circuit) is the resistance R seen from 

C3’s terminals times C3. It is simply  3 1 3 3R R C   .  

We do not need the numerator as we are only interested in the denominator’s root. However, should you want 

the numerator also, it is the same structure as when we analyzed Z1. The response VT across the current source 

disappears if R3 and C3 become a transformed short. Once you have assembled this data, you have: 

 
 

3 3

2 1

1 3 3

1

1

sR C
Z s R

s R R C




 
          (32) 

To cancel the denominator and have this impedance magnitude approach infinity, you must solve: 

 

2R 1C

2C

 FBV s
 outV s

1R

lowerR
refV

3R 3C

 2Z s
 1Z s
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 
2 1 3 31 0zs R R C             (33) 

leading to  

 2

3 1 3

1
zs

C R R
 


          (34) 

The intermediate type 3 transfer function is thus: 

 
 

1 2

0

1 1
z z

s s

G s G
D s

 

  
   

  
  

          (35) 

in which 

1

2 1

1
z

R C
             (36) 

 2

1 3 3

1
z

R R C
 


          (37) 

and 

0

1

lower

OL

lower

R
G A

R R
 


          (38) 

To determine D(s), you will have to bone up on [4]. 
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For further reading on power supply compensation, see the How2Power Design Guide, and do a keyword search 

on “compensation.” 

http://www.how2power.com/search/index.php

