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Interbundle Penetration Of Wire Bundles Improves Their Packing Factor 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

When winding transformers or coupled inductors with twisted wiring bundles, turns of adjacent wire bundles are 
typically wound close-packed to maximize packing factor (and in particular, porosity packing) and ultimately 

maximize winding current density. Bundles of a small number of strands can pack together more closely than 

those with a large number of strands because of the sinusoidal variation in their outside diameter. This article 
examines the extent to which twisted wire bundles can penetrate each other by fitting into the dips in adjacent 

windings and thereby increase packing factor. This analysis quantifies the relationship between the number of 

strands in a twisted wire bundle and the extent to which one wiring bundle penetrates or “meshes with” the 
other. 

Modeling Adjacent Wire Bundles 

The shape of a bundle of Ns strands when viewed from the side of the bundle has a characteristic ripple along 

its outer edges. The individual strands in the bundle can be described mathematically as a helix, and for each 
bundle pitch length, p, they rotate a full turn, a revolution or cycle of 2π radians around the center-line of the 

bundle. Viewed from the side (at any helix angle, θ), the strands follow a sinusoidal curve. In a bundle of Ns 

strands, each strand proceeds through one revolution of θ. Like polyphase electric power, there are thus Ns 

“phases” of strands, separated by 2π/Ns of angle and symmetrically spaced. 

A graph of the strands viewed horizontally as functions of two adjacent bundles is shown in Fig. 1. 

 

   
(a)                                                            (b) 

Fig. 1. Side view of interpenetration of top bundle strand into bottom bundle, penetrating 
between two adjacent strands in the lower bundle (a). For reference, the construction of a single 

bundle is also shown (b). Bundle radius is rbw, and the upper bundle is offset from the lower by 
π/Ns for maximum penetration of Δr. The spatial phase offset of Ns strands from each other in a 

bundle is 2π/Ns. 

To mathematically construct what is shown in the Fig. 1 graph, I will add more than the usual number of steps 

in the derivation (which is mainly trigonometry) to encourage you to think through it to the resulting design 

formulas. Knowing how formulas are derived reveals their assumptions and makes their applicability better 
understood.  

The lower-bundle left strand is rbwsinθ; the right strand, offset by θ = 2π/Ns is rbwsin(θ – 2π/Ns). The upper 

strand reaching down also has a bundle radius of rbw and is r0 – rbwsin(θ – π/Ns). It is offset in phase to center 

its peak between the two bottom strand peaks. Then the first equation that constrains where the strands are 
positioned is 
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In equating the two functions and solving, their intersections are found. Imagine lowering the upper strand by 

decreasing r0 until it touches the lower strands. The goal is to find r0, for then the penetration depth, Δr is 

easily determined as the valley, r0 – rbw of the upper strand subtracted from the peak, rbw, of the lower strand; 

Δr = rbw – (r0 – rbw) = 2rbw – r0 

Using the sine sum-of-angles formula, the above constraint equation can be put in the form,  
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With this one constraint, the upper and lower functions can intersect in two points. To constrain them to a 

single tangential point, their derivatives are equated: 
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This additional constraint requires that the functions at their intersection also have the same slopes, which 
constrains them to be tangent to each other. Applying the cosine sum-of-angles trig identity, the equation 

reduces to 

0sin)]π/[sin(cos)]π/cos(1[   ss NN  

Solving for cosθ using the identity, sin2θ + cos2θ = 1, 
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Solving for sin2θ and simplifying, 
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. Two values for θ are possible, but the 

one that applies here is the one that places θ in the second quadrant: sin(π – θ) = –sinθ. As can be seen in Fig. 
1, the intersection of strands is at an angle of θ > π/2, past its peak.  

Substituting cosθ into 
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Then substituting into 
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Bundle penetration reduces the spacing between bundles and in effect reduces their radius to 
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Finally, the bundle interpenetration (not to be confused with the eddy-current penetration factor, ξr = rc/δ) is 

defined as 
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Some values are listed in the following table. The right column gives the fractional decrease in radius caused by 

penetrating bundles. 

Table. The difference in radius between penetrated and unpenetrated radii normalized to the unpenetrated 

radius (Δr/rbw) and the bundle interpenetration ratio (rbw”/rbw), both as a function of Ns in two adjacent wire 

bundles. 

Ns 
bwr
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bw

r
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1 2 0 

2 22  0.586 2/2   0.7071 

3 32    0.268 2/3   0.866 

4 222    0.152 0.924 

4.946 0.1 0.95 

5 0.0979 0.951 

6 322    0.0682 0.966 

7 0.0501 0.975 

15.7 0.01 0.995 
 

The case of one strand is degenerate but included to show that packing bundles as single strands does not let 

the strands penetrate at all. Two-strand bundles do not have a high bundle fill factor, kpb, compared with Ns = 3 

or 5 but this is compensated somewhat by the high penetration. When phased to penetrate maximally, the 
bundles, do so for almost 30% of the bundle radius.  

As strands are added to bundles, their penetration decreases (as does ripple in a polyphase rectifier) until for 

about 16 strands, the penetration is less than 1%. Thus, for Ns >> 1, penetration becomes negligible. However, 

bundles with few strands have proximity-effect advantages over bundles with many strands, and the above 

table can be used to assess their benefits. Additionally, the outer sub-bundles of Litz wire are optimally of a low 

number of sub-bundles to minimize eddy currents, and the above table can apply to the sub-bundles. 
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The assumption of the table is that the turn length of a bundle is divisible by bundle pitch—that is, the turn 

length is an integer multiple of the pitch so that the adjacent bundle “waves” are in-phase and hence the 
maximum protrusion of one bundle fits into the minimum of another, as shown in Fig. 1. However, with existing 

winding methods, achieving the in-phase arrangement of adjacent wire bundles is unfeasible. So, in the general 

case, adjacent bundles will be “out of sync” and an average penetration might more accurately apply in practice 

by reducing penetration by 2, an average of rbw” and zero. 

As a consequence of bundle penetration, and given a previous article’s coverage of the twist factor (see the 

reference) and the effects of twisting (resulting in rbw’), both factors affect bundle packing factor. The twisted 

rbw, which is rbw’, is used in the above formulas for rbw so that twisted bundles that penetrate each other can 

also be accounted for in the winding model. While twisting increases bundle radius (to the disadvantage of 

reducing packing factor), the penetration factor in part compensates for it by increasing packing for bundles 

with a smaller (typically 5 or less) number of strands. 

 

 
Reference 

“The Geometry of Twisted Wire Bundles” by Dennis Feucht, How2Power Today, July 2018. 

About The Author  

Dennis Feucht has been involved in power electronics for 30 years, designing motor-
drives and power converters. He has an instrument background from Tektronix, where 

he designed test and measurement equipment and did research in Tek Labs. He has 

lately been working on projects in theoretical magnetics and power converter research. 

 

 

 

 
 

For more on magnetics design, see these How2Power Design Guide search results.   
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