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ISSUE: March 2019 

How To Thermally Model Magnetic Components 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

The most difficult aspect of magnetic component design is the quantification of thermal behavior. Core and 
winding temperatures are the ultimate limitation on how much power can be transferred through a magnetic 

device, yet to calculate allowable power transfer at maximum design temperatures is challenging. This article 

surveys some of what is involved in thermal modeling and how to conceptualize it.  

First, we introduce a simplified version of Fourier’s heat-rate equation, and explain how from this equation, a 

simple network model is derived that describes the flow of thermal power (i.e. the heating rate) via conduction 

and convection from a magnetic component’s core and windings to the air. From this simple model of a thermal 
network, more complex models are derived that account for the core and winding configurations associated with 

the different types of cores that are popular in power electronics. Next, a thermal model flow graph is used to 

explain how thermal power flows through the core and windings in the different configurations. 

With that as background, we discuss how assumptions about the conditions for max efficiency lead to design 
rules of thumb for determining maximum allowable temperature rises for the core and windings. This discussion 

of maximum temperature rise leads to two possible methods of determining current density and thus maximum 

winding loss. One is based on the condition of max efficiency where core loss and winding loss are equal, while 
the other method is based on thermal network analysis. The designer is advised to use both methods of 

determining winding power loss and to conservatively go with the higher value. 

However, since thermal network analysis is made difficult by the estimation of thermal resistances, the article 
concludes by presenting a simpler, shape-based scheme for thermal analysis. This method determines allowable 

core loss from the core shape and then is refined by taking into account the effect of the core-winding 

configuration. 

Thermal Network Models 

Heat is transferred by three possible mechanisms: conduction through a material, convection of heat from a 

surface to air or another fluid, and radiation. All three are involved with magnetic components, though radiative 

transfer at component temperatures is only a few percent (46 mW/cm2) and is often ignored as padding for the 
thermal safety margin. Heat flow is in many ways analogous to current in electric circuits. Fourier’s heat-rate 

equation is the “thermal Ohm’s Law”. It is a differential equation that, like Maxwell’s equations, can be 

simplified for simple geometries to 

RPT   

where ΔT is the temperature rise above the temperature of the ambient surroundings, TA. The air is considered 

an infinite heat sink at constant temperature, and is analogous to a voltage source. P is the average power loss 

and for magnetic components, total loss also consists of average winding and core losses;  

cwt PPP   

Heat is thermal energy and thermal power is the heating rate. The thermal resistance through which heat flows 
is Rθ, with units of K/W or °C/W. In a thermal network model, power is analogous to current and is modeled by 

a current source. Thermal resistance, Rθ is analogous to electrical resistance, and T is analogous to voltage. A 

simple model is shown in Fig. 1. 
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Fig. 1. Basic thermal model: thermal power, P, flows through conductive thermal resistance, 

Rθcond to air surface and then through convective thermal resistance, RθA to the surrounding air at 

a temperature of TA. 

Heat flows through both the conductive core and winding material to the component surface then convects  
away into the air. Conduction and convection are modeled as separate resistances in series. 

Core types can be categorized as having one of two possible configurations: core-winding-core (C-W-C) such as 

pot cores, and winding-core-winding (W-C-W) such as toroids, EE, EC, ETD, EFD, and EER cores. PQ and RM 
cores are somewhere in-between. These two configurations have the same form of equivalent thermal network, 

but they are not the same, as shown in Fig. 2. Winding heat of C-W-C cores must travel through the core to 

reach the air. In W-C-W cores, core heat must exit through the windings. The convection resistance, RθA, 
depends mostly on component surface area and not on configuration.  

 
Fig. 2. Component configurations core-winding-core (left) and winding-core-winding (right) have 

different thermal network models. For C-W-C cores such as pot cores, all the winding heat goes 

through the core. For W-C-W cores such as toroids, the core heat goes through the winding. 

A more general model is shown in Fig. 3. Core and winding heat flow through separate paths to the air and the 

heat common to both flows through Rθwc. In this model, Rθw and Rθc are configuration-dependent and are not 

approximately equal between configurations as in Fig. 2. 
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Fig. 3. A more general magnetic-component thermal model. Rθwc allows winding heat to flow 

through the core or core heat to flow through the winding, though Rθc and Rθw depend on core-

winding configuration. 

The more general model of Fig. 3, however, cannot represent both C-W-C and W-C-W configurations without a 

change in the meaning of Rθw and Rθc between them. In the W-C-W case, Tc > Tw and some of Pc flows from left 

to right through Rθwc. In the C-W-C configuration, some of Pw flows from right to left through Rθwc. For C-W-C, 

Pw flows through Rθwc, which equals Rθw in the Fig. 2 C-W-C model, and Rθw of Fig. 3 is open-circuited so that 

all of Pw goes through Rθwc.  

In the W-C-W configuration, Pc flows through Rθwc = Rθc of Fig. 2, and Rθc of Fig. 3 is open-circuited. For RM 

and PQ cores, Rθc and Rθw both have finite resistances, and some of Pc and Pw go through both core and 

winding. Then the fraction of power that flows through Rθwc is designated by the parameters fw and fc.  

Thermal Model Flow-Graph 

A thermal model can be expressed as a flow-graph, as shown in Fig. 4. The fraction of winding power that exits 

through the core is fw, and the fraction of core power that exits through the winding is fc. 

 
Fig. 4. Thermal flow-graph showing thermal power flows of winding and core; fw is the fraction of 
winding power loss that exits to the surroundings through the core, and fc is the fraction of core 

power loss that exits to the surroundings through the winding. 

Pc is the power loss generated in the core and Pw is the winding loss in the winding. The flow-graph power 

exchange between the core and winding is structurally symmetrical though behaviorally, the flow parameter 

values result in asymmetrical flows, as given in Table 1 with extreme configuration values. With a C-W-C 

configuration of cores and windings, in the extreme case, it’s possible for all of the heat generated in the 
windings to flow out to ambient through the cores, while none of the heat generated in the cores flows out 

through the windings. With a W-C-W configuration, the opposite extreme case is possible. 
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Table 1. Extreme cases of thermal power flow in a magnetic component as a function of core-winding 

configuration. 1 represents 100% of thermal power flow. 

Configuration fw fc 

C-W-C 1 0 

W-C-W 0 1 

 

The flows are asymmetrical not only because of structural differences in core-winding thermal paths but also 

because of thermal resistance values. The geometric formula for thermal resistance has the same form as that 

of electrical resistance; 
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where l is the thermal path length, A is the cross-sectional area of the path, and σθ is the thermal conductivity. 

Copper wire σθ is about 95 times that of ferrite core material. Wire insulation decreases overall winding thermal 

conductivity yet typically Rθw << Rθc for comparable l and A. Thus, core heat raises the winding temperature to 

be comparable to that of the core in both C-W-C and W-C-W configurations. Because Rθw << Rθc, ΔTw << ΔTc 

for winding and core in the direction of heat flow. 

Maximum Power Transfer 

Power transfer between windings is maximized whenever wP   cP  and this leads to some rules of thumb about 

allowable temperature rises for the windings and cores (ΔTw and ΔTc). Then the operating-point is at ηmax, the 

peak of the transfer efficiency curve. For cores operating at ηmax for ηmax  1, wP   cP . Thus, 
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In both C-W-C and W-C-W configurations, ΔTw is given more design margin, set at ΔTw = 30K, the temperature 

rise for typical wire table ampacity. For C-W-C, the inner winding is hotter than the core, and a reduced ΔTw 

reduces Tw. For W-C-W, the core power also heats the core, and the lower ΔTw mitigates this somewhat. The 

ΔTc value of ΔTc = 40K should, at a maximum ambient temperature of 50°C, operate typical ferrite cores at the 

lowest loss and yet have a negative temperature coefficient. Thus the minimum-loss temperature is typically 

around 90°C. 

Two Thermal Analysis Schemes  

The winding ampacity for a given temperature rise as given in wire tables is based on the current-density 

formula, 
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The derivation of this formula[1] includes the max-η condition of wP   cP . The area product, AAw—the magnetic 

cross-sectional area and window area—scales the result so that current density is reduced for higher core 
volume. Thermal network analysis is only loosely linked to this ampacity formula and results in another 

estimate of maximum power transfer. In this case, the ampacity value depends on area product, AAw, as 

determined by the primary power, pP  as 

Ampacity method of determining winding 
current density and thus max winding power. 

This is based on the max-η condition and 
wire-table values. 
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where the area product is proportional to pP  if the parameters in the coefficient of the area-product expression 

are constant. However, kp, the wire packing factor, varies with wire size, cj
~

 varies with core size, sfB ~
ˆ  varies 

with core material, the current form factor κp varies with current ripple waveshape, and the duty ratio D varies 

with converter operating-point. Thus the area-product method of determining current density is a largely 
independent method for estimating transfer power because both core and circuit parameters assumed by it are 

independently chosen. 

The minimum of the two power values obtained with the two methods described here is the conservative rating, 
and it is often the case that the ampacity-based power exceeds that of network analysis when eddy-current 

effects on winding resistance are included. The ampacity rating is based on static current and can be expected 

to be higher, though a well-designed winding might have a resistance lower than the “optimal” primary-referred 

ampacity-based, ηmax winding resistance, 
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where pi
~

 = Imax = primary winding ampacity. If Rwp < Rwpopt, then the allowable pi
~

 > Imax. 

Shape-Based Thermal Model 

Thermal network analysis requires estimation of thermal resistances and this can be an arduous task. A 

different thermal design scheme (in PMDO, pages 75 – 90, see reference 2) avoids this problem by basing 
thermal analysis on shape-based reasoning and is an alternative to the network model. The worst shape for a 

core is a sphere because it has the lowest surface area to volume ratio and thus the highest thermal resistance 

for a given material. Core power loss, 

VpP cc   

where cp  = core power-loss density and V = core volume. A well-designed core has uniform power loss over its 

volume, and the core heat leaves the core from its surface area. Commercial core shapes all have lower thermal 

resistance than a sphere and the extent to which their thermal resistance is lower is quantified by a size-

independent factor, the thermal shape factor, Ξθ. An expression for this factor can be derived from core volume 
and surface area (see PMDO[2]). Then the improvement in allowable core power density over that of a sphere is 

sphere)(cc pΞp    

Given the magnetic frequency and the maximum cp , a maximum ΔB can then be determined from catalog core-

loss graphs.  

An additional refinement of this thermal model accounts for the core-winding configuration, the additional core 

heating from the winding, by parameter fw. If all the winding heat goes through the core (fw = 1), then under 

the ηmax condition of wc PP  , the core has twice the heat, and cp  must be reduced to half. If instead the core 

heats only itself (fw = 0), then the full value of cp  can be used for design. For estimates of fw in-between—and 

PMDO gives PQ and RM cores a value of ⅓—then an additional factor is multiplied to the cp formula of 
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Area-product method of determining winding 
current density and max winding power. This is 

the basis for the ampacity equation. 
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The full shape-based thermal formula is thus 
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Table 2 gives values of the different fw factors used to calculate cp  for different values of fw. The last column 

shows the error in the approximation of the fw factor. 

Table 2. fw factors for shape-based thermal formula for core power loss.  
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0 1 1  

0.1 0.909 0.95  

0.25 0.8 0.875  

0.333 0.75 0.833 Δ0.0833 

0.414 0.707 0.793 max: Δ0.0858 (12.1%) 

0.5 0.667 0.75 Δ0.0833 

0.667 0.6 0.667  

0.75 0.571 0.625  

0.9 0.526 0.55  

1 0.5 0.5  

 

The penalty for cores having fw = ⅓ reduces allowable cp  by × 0.833, a 16.7% reduction over fw = 0. Only fw is 

used in the shape-based formula because core heating of the winding, with its lower thermal resistance, will not 
raise ΔTw by much. In setting fc = 0, the model is simplified, though for aluminum or other windings with higher 

thermal resistance, it can be included in the model.  

The rough approximation of fw shows that the model is intended to be approximate, yet accurate enough to be 

useful for design. In the comparisons made with core manufacturer data, the curve fit is well within that 
required for magnetic component design. 

References 

1. A derivation of the ampacity formula is found in Transformers and Inductors for Power Electronics, W. 
G. Hurley and W. H. Wölfle, Wiley, 2013. A review of this book is available here. 

2. Power Magnetics Design Optimization by D.L. Feucht, Innovatia Laboratories. 

3. A general magnetics book that has more thermal modeling than most is Inductors and Transformers for 
Power Electronics by Alex Van den Bossche and Venislav C. Valchev, CRC press, Taylor & Francis Group, 

2005, available from www.taylorandfrancis.com. A review of this book is available here. 

 

About The Author  

Dennis Feucht has been involved in power electronics for 30 years, designing motor-
drives and power converters. He has an instrument background from Tektronix, where 

he designed test and measurement equipment and did research in Tek Labs. He has 

lately been working on projects in theoretical magnetics and power converter research. 

 
 

For more on magnetics design, see these How2Power Design Guide search results.   

http://www.how2power.com/newsletters/
http://www.wiley.com/go/hurley_transformers
http://www.how2power.com/pdf_view.php?url=/newsletters/1410/H2PowerToday1410_FocusOnMagnetics.pdf
http://www.innovatia.com/
http://www.taylorandfrancis.com/
http://www.how2power.com/pdf_view.php?url=/newsletters/1507/H2PowerToday1507_FocusOnMagnetics.pdf
http://www.how2power.com/search/search.php?subcat_id=56

