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Another Look At The Refined Model Of Current-Mode Control 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

The analysis of current-model control in power conversion has a long history, going back over four decades, 

encompassing different approaches (waveform-based versus circuit-based models, averaged versus sampled 
waveforms) that capture different aspects of converter behavior. These different forms of current-loop models 

have evolved over time as their developers have attempted to improve their accuracy or completeness. First 

generation models by Middlebrook, Macsimović and Erickson were followed by Ridley’s sampled-loop model and 
then Middlebrook and Tan’s unified model. In a previous article series on peak-current control (see the 

reference), I described the development and evolution of these different current-loop models and how they led 

to my development of a new model I call the refined model of current-loop control. 

For those not yet familiar with the refined model and those generally curious about modeling of current-mode 
control, this article offers a summary of the earlier seven-part series. It gives a broad overview of how a 

seemingly simple circuit (Fig. 1)—the peak (or valley) current-mode controller of switching converters—has 

been analyzed, or modeled, through four generations of development, culminating in what is probably the final 
generation, the refined model. 
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Fig. 1. The basic peak-current controller circuit—a simple circuit with complicated behavior. 

Waveform Versus Circuit-Based Modeling 

The historical development of current-loop models started from the inductor triangle-wave current waveform 

and has resulted in various waveform-based models. In contrast, models that begin with circuits instead of 

waveforms result in circuit-based modeling.  

Waveform-based models are behavioral models (as waveforms express circuit behavior) that apply to any 

circuit for which the waveform is an approximation; circuit-based models are structural models from which 

specific behaviors are determined by circuit analysis. One scheme starts with waveforms, the other with 
circuits.  

http://www.how2power.com/newsletters/1905/index.html
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The inductor current, iL waveforms are shown in Fig. 2. All waveform-based models are derived, in one way or 
another, from them. 

 
Fig. 2. The inductor current waveform of switching converters, iL, where k is the cycle count. The 

lower waveform is that of the cycle-average current, Li  during the interval between peaks. The 

slopes in transition are those of iL. 

Models Based On Averaged Voltages And Currents 

The first generation of current-loop analysis goes back to R.D. Middlebrook and CalTech students, Dragan 

Macsimović and Robert Erickson (both now professors at the U. of Colorado Boulder), as given in their classic 

power electronics book, Fundamentals of Power Electronics, Second Edition (KAP). They averaged voltages and 
currents between on and off states of the converter. This worked for loop bandwidths much less than the loop 

switching frequency, where approximately continuous waveforms can be analyzed with continuous control 

theory. Yet it did not explain an instability in which alternating cycles have different duty ratios, D, called 
subharmonic oscillation. 

The Sampled-Loop Model 

In the late 1980s, Ray Ridley discovered the “continuous time” (actually, piecewise-continuous) or sampled-loop 

model, based on the valley points of inductor current, iL, at the end of each cycle, and not the average iL. The 

sampled-loop model accounted for subharmonic oscillation by recognizing that the inductor during the off-time 

is a sample-and-hold device, storing the current of the cycle. As a sample-and-hold (S&H) circuit, it is the dual 

of capacitor S&H circuits. This S&H behavior can be seen in Fig. 2 in the lower waveform. 

Ridley’s model did not unify sampling behavior with the dynamics of the average inductor current. It is the 

average that is of interest in converter design because an average is an approximation of an ideal constant-
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current waveform, which is what is desired at the converter ports. Consequently, the resulting transfer function 
of per-cycle average current is dynamically different than Ridley’s model. 

The Unified Model 

In the 1990s, Middlebrook and his student, F. Dong Tan introduced what they called a unified model, which was 
an attempt to achieve sampling and average current in a single model. They made some improvements to 

Ridley’s work, for instance, by taking the sampler out of the feedback path and moving it to the front of the 

forward path. However, their model was not derived from a single set of basic equations but, like previous 
models, had independent assumptions about (and equations for) the PWM block in the loop. 

In steady-state operation, the inductor current value is the same at the beginning and end of cycles. The 

waveform equation of the Fig. 2 waveform is 

)()(' )()1()( kiTkmTkmkiki LsDsULI    

The z-domain and z transforms can be used as a shortcut between the familiar time and complex-frequency (s) 

domains. The delays of Ts between adjacent cycles can be expressed in the time domain with cycle count, k as 

kTs. The variable, z–1 is a delay of one period and transforms a time-domain variable, x((k –1)Ts) into z–1x(z). 

It appears in the sampled s-domain as e–st. The sampled-loop steady-state valley-current transfer function in z 

of Ridley’s model is 
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How this is related to waveform equations is shown in the description of the final current-loop model, the 

refined model. 

The Refined Model 

The refined model derives the waveform and slope equations of the waveform-based model from the 

incremental average current, li  instead of valley current, il by making the following substitution into the current 

waveform difference equation: 

)()(2)( kikiki ill   

where ii(k) is the discrete incremental input (commanded) current. The resulting average inductor-current 

waveform equation is 
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This results in a more complicated s-domain transfer function that has a delay within the switching cycle to 

account for averaging. To compare with the sampled-loop transfer function in z, the refined-model transfer 
function is 
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In the s-domain, the resulting approximation is found by substituting the s-domain advance factor for z = est; 
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In comparison, the closed-loop valley-current transfer function for the sampled-loop model is 
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The quadratic poles are identical but averaging the current adds a delay in the numerator to account for the 

phase shift of the average from the valley current. The avg-current function can be approximated by 

substituting the modified Padé approximation for the s-domain time delay of Ts , 
sTs

e


 which results in the 

approximated closed average-current-loop function, 
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This is the transfer function of the incremental (small-signal) closed current loop. It has similarities to previous 

models but includes the delay of the average current, which does not occur at the end of the cycle where the 

valley current is, but within it. 

For the blocks within the loop, the converter power-transfer circuit function, Gid, of the refined model is 

equivalent to that of the sampled-loop model. Gid is duty ratio in, inductor current out. Converted to the s-

domain, it is 
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It differs from the valley-current GidV by the ½ factor which is the difference between steady-state valley and 

average current. 

The PWM block, Fm in the forward path of the loop has been the subject of various modeling efforts. Fm of the 

refined TC(s) can be found by solving for it from the closed-loop feedback equation, 
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and substituting the above Gid. Then in normalized form, the PWM transfer function is 
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from which the steady-state (quasistatic) Fm is 
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For [s/(s/2)]2 << 1, or low frequencies, 
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The refined Fm(s) has, like the unified model, a single-pole Fm(s) at ωs/2 but it varies differently with D. 

The comparison of the different Fm0 for the various current-loop models can be simplified by excluding the 

effects of slope compensation that prevents subharmonic oscillation. Differences in slope compensation methods 
confuse the comparison. The uncompensated models must still correctly predict uncompensated behavior to be 

valid.  

 
The addition of the compensating waveform at the summing block can be regarded as a modification of the 

input, ii. Then the Fm0 of the unified model of Tan and Middlebrook is essentially 
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whereas the sampled-loop model of Ridley is valley-point-based and is 
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The “Fairchild” model (Holloway and Eirea) and also that of Tymerski and Li are equivalent for average current: 
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where the ½ accounts for the difference between valley and average current. In the refined model  
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and is equivalent to the sampled-loop and Fairchild Fm0. The total forward path, G, thus has a net static gain 

that is that of the sampled-loop and Fairchild models because Gid (for average il) is half that of GidV. The cubic 

denominator of the refined Fm0(s) can be simplified to 
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If the ½ of Gid is brought into Fm0,  
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and is the same as the Tymerski and Fairchild Fm0. All equivalent models have D’ in the denominator of Fm0. The 

unified model of Tan has (1/2 – D). This accounts for the fs /2 resonance, but it should instead belong in the 

frequency-dependent factor of the transfer function, as it does in the other models. 

By placing the sampling function, which Ridley called He(s), in the feedback (H) path, the sampled-loop model 

of Ridley lacks a free transfer-function variable needed to form a transfer function. However, if He is brought 

forward through the summing block into the forward path (to make it more like the unified model), then 

sampling occurs after the error summing block and a transfer function exists. This is a justification for preferring 
a model like the unified model that samples the error quantity, with sampler at the input to the forward path, 

G, so that a transfer function can be derived. The refined model is a refinement of the unified model and retains 

this sampler placement in the loop. 

 
The low-frequency-average (lf-avg) model, as presented by Erickson and Macsimović in their book, established 

the quasistatic value (Fm0) of the PWM transfer function, Fm. Middlebrook and Tan used an equivalent average 

inductor current expression in their “unified” model though derived a different way and not obviously 
equivalent. 

 

The current-loop modeling story goes on but is reaching maturation. The two main improvements of the refined 
model are that average-current dynamics are included as part of the derivation of the model from basic 

principles, and in doing this, the PWM block function also drops out of the derivations and does not need 

independent assumptions about it, as in the previous models. 

What is left to do for current-loop modeling is to combine waveform- and circuit-based models into one grand 
model. However, this poses what are probably needless challenges in that the two accomplish different goals. 

The waveform-based models have an ideal and simplified inductor waveform with linear slopes. Real circuits 

include resistance which causes (slightly) exponential slopes and are better modeled with circuit analysis. 
However, the waveform-based models apply to any circuits for which the waveforms are a valid approximation. 

At National Semiconductor (now Texas Instruments), Robert Sheehan’s effort has been to generalize circuit-

based analysis so that it extends toward the generality of waveform-based modeling. 

For typical converter design, the waveform-based models are quite sufficient, and even Ridley’s second-

generation model is adequate in most cases. For those wanting a more inclusive and theoretically “cleaner” 

model, the refined model is preferred, though newer and without as much design experience applied to it. 
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For more information on current-mode control, see How2Power’s Design Guide, locate the Design Area category 

and select Control Methods. 
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