
 

 

Focus on Magnetics 
    Sponsored by Payton Planar 

 
 

 © 2020 How2Power. All rights reserved. Page 1 of 5 

ISSUE: April 2020 

Optimize Inductor Design To Minimize Output-Filter Size 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

In the converter PWM-switch CP (buck) and CA (boost) configurations, the PWM-switch inductor, L, is in series 
with the input and output ports. The output capacitor, Co, is in parallel with the output port, as shown in Fig. 1. 

Actual L and Co components have parasitic series resistance which causes power loss and these parasitics are 

not represented in the figure.  

 
Fig. 1. The output filter circuitry in PWM-switch converters, with the power-transfer inductor from 

input to output port (switches omitted), and output capacitor shunting the output voltage port. 

Both the inductor and the output storage capacitor are subject to either design or component selection by which 

the loss in each can be determined. It’s common that they are the largest components in a converter. Their 

combined component size can be minimized by not allowing either component to become much larger than the 

other.   

In this article, equations are derived to enable the inductor and capacitor to be similarly sized in order to 

minimize overall filter size (volume). We approach this problem from a thermal viewpoint and set out to 

equalize the inductor and capacitor power losses. From there we can determine the optimal value of L for a 
minimum volume of L and Co.  

The first version of the equation for optimal L includes size-dependent core parameters, which assumes a 

particular core has been chosen. So, this equation is further refined to express it without reference to these 
core-specific parameters as well as in another form that does assume a specific core, but uses more readily 

available core data sheet parameters. Each of these equations also assumes that the capacitor has been 

selected. 

Toward the end of the article, another form of the equation will express the optimum value of C for the case 

where the inductor has already been designed or specified. But before that a design example will be presented 

to demonstrate the calculation of optimal L, given a specified core and capacitor. The article concludes with 
some discussion of how to use the derived equations, and how capacitor and core manufacturers could support 

the use of these equations in their data sheets.  

Determining L And C Losses  

With constant output voltage, the ripple component, iL~ of inductor current is the capacitor current; iC = iL~. In 

the inductor, iL~ causes core and eddy-current winding loss, minimized by winding design. Core loss depends on 

frequency, field density, and choice of core material and size which relates to field density. Core power-loss 

density, in mW/cm3, is graphed in core catalogs for various core materials. If the winding area is not over-
constrained, core loss is the determining factor of core size. Cores are designed so that if the window area is 

filled with winding, the winding loss, Pw and core loss, Pc result in a power-loss ratio of ψ = Pw /Pc  1 for 

maximum power transfer.[1] Then total inductor loss is PL = Pc + Pw  2Pc.  

Cylindrical electrolytic capacitors have a shape similar to that of pot-based cores, including PQ, RM, and slabbed 
pot cores and thus have a comparable thermal shape factor.[2] Capacitors have both electrical (plate resistance) 
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losses and dielectric loss from polarization in the dielectric material by displacement current—a loss 

corresponding to core hysteresis loss in inductors.  

Electrolytic capacitor power-loss ratings are not given in catalogs as such; maximum current is given instead. 

Capacitor series resistance is also not usually given. If inductor and capacitor power loss densities are about the 

same and core size is determined by core loss, then equal parasitic resistances dissipating power result in equal 
component volumes.  

By the equal-resistance criterion, for inductor core resistance, RL and capacitor series resistance, RC, average 

inductor and output power losses from ripple current are 
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For the inductor, magnetic loss can be approximated by the Steinmetz “classical” loss equation, 
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where 0cp  is the operating-point core-loss average power density, 2/ˆ
~ BB   is the peak or amplitude of the 

magnetic-field density ripple, and 0~B̂  is its value at a given operating-point of BB 0 . cP  scales with 0cp  

with the given core material and constant switching frequency, fs. 

The inductor average magnetic power loss is VpP cc   where V is the core volume. For optimal inductor 

design, the magnetic (core) and electrical (winding) losses are about equal and the total inductor loss is 

cwcL PPPP  2  

The capacitor loss for iL(t) with CCM triangle-wave ripple, iL~ = ΔiL is 
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where the ripple component is RMS capacitor current, ~

~~
LC ii  , and is the RMS ( i

~
) value of the iL ripple (iL~). 

Equating losses for approximately maximum power transfer at high efficiency,[1] 
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The inductor current ripple amplitude that corresponds to the peak magnetic field density is 
~

ˆ
Li = ΔiL/2 = 2/ˆ

Ci .  

Next, refer LiL   to the field (with “Magnetic Ohm’s Law”) as 

LiNABNN  )( 2 L   

A

iNB
B L )2/(

2
ˆ

~







L
, 

L

L
N   

http://www.how2power.com/newsletters/


 

 

Focus on Magnetics 
  Sponsored by Payton Planar 

 

 © 2020 How2Power. All rights reserved. Page 3 of 5 

Then substituting N and simplifying, 
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Substitute this into the equal-loss equation; 
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The optimal L for minimized volume of L and Co is thus 
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A and L are geometry- or size-dependent core parameters. Without choice of a core, size is unknown and size-

dependent parameters need to be eliminated from the equation. Substituting for iL~0
2, this simplifies to 
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where μ is the permeability of the inductor core at its operating-point. The expression for L can be cast into a 

more interpretable form as  
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The numerator is the linear magnetic energy density at operating-point, 0 and the ratio is in units of time. RC is 

in ohms (Ω) and ohms x seconds equals henries (Ω·s ≡ H), the unit of inductance.  

As an alternative to μ, given as catalog core data are L, A, and l if it has already been chosen. Substituting for 

μ, 
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As an example, the Micrometals iron-powder 26 material has μr = 75 and a power-loss density of 






mT 10 ,mW/cm 45

mT 30 ,mW/cm 400
3

3

cp   ,  fs = 100 kHz 
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Substituting into the core-loss equation, 
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This is an equation for a log-log plot of the general form 
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with log(y/y0) plotted against log(x/x0) as a line with slope, m. Applied to the magnetic loss data, 
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These two data points of the loss function show that the “classic” B exponent of 2 from the Steinmetz equation,   
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is a close approximation to the powdered-iron material manufacturer data. If 30 mT is chosen as the magnetic 

operating-point, then μ = μrμ0 = (75)(1.26 µH/m) = 94.5 μH/m, and 
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With a choice of capacitor and RC, Lopt is calculated from the formula. As an example, for RC = 0.25 Ω, 

Lopt = 1 μH. 

This exercise in component size minimization is an example of an optimization not usually considered. Inductor 

design involves multiple criteria leading to multiple kinds of optimizations. The optimization given here places 

no further constraints on the magnetics design, especially if the output capacitor is chosen from RC instead so 

that inductor design remains unconstrained. The minimization equation, solved for either L or RC, results in two 

design formulas:  
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The first expression in both formulas is core-size independent. The second expression assumes that the core 

has already been chosen from magnetics design.  

Constraint of RC might conflict with control-loop response optimization because RC affects the placement of an 

important zero in the s-domain response of the voltage-control loop. However, it can guide dynamics design 

toward a value of RC that will also reduce converter size. 

Closure 

The derived design formulas for minimizing converter inductor and output capacitor size are based on the 

assumption that the thermal resistance of inductor and capacitor are comparable, that inductor current ripple 

equals capacitor current, and that overall size is minimized when power loss in equivalent resistances of 
inductor and capacitor are the same. These assumptions should be verified for components of any particular 

design.  

Hopefully, in future capacitor catalogs such component parameters as series resistance (ESR) as a function of 
frequency and current, and thermal resistance will be given. (Ideally, the thermal shape factor, Ξθ will be given 

by both capacitor and magnetic-core manufacturers in their parts data.) Consequently, this optimization is 

somewhere between an approximate quantitative method and a rationale for calculating minimum-size 

inductance and capacitance. Hopefully, the logic of it can guide minimization of component sizes. Another 
rationale on the same general topic is given in reference [3]. 
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