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Transformer Winding Design: Bundle Layer Approximation As Rings 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

Wire bundles consist of strands of individual wire conductors bound together and wound as turns in a winding of 

a magnetic component such as a transformer. Having less than five strands minimizes the proximity effect 

within a bundle when twisted. Some bundles have many more than five strands, and within the bundle, those 
strands form the same kind of pattern as wire wound in layers in a winding, with the same packing properties.  

With multiple layers of strands within a bundle, the proximity effect becomes significant. To estimate what it 

might be from Dowell’s equation (or algebraic approximations of it) some estimate of the number of layers of 

strands, Ms, within the bundle is needed. An estimate of the number of layers is needed because the 

configuration of strands in a bundle does not mirror the planar layering of an unbundled winding. This circular 

geometry leads to different methods of counting, or calculating the number of layers. This article derives 

various formulas for estimating Ms and gives rationales for them. 

Layer Approximation Based On Semi-Circles Of Rings 

When strands are added to a bundle, they naturally compress into shapes of minimal cross-sectional area. For 

many strands, these shapes take the form of rings of strands, as shown in Fig. 1. 

  
Fig. 1. Multiple strands in a wire bundle form rings. The number of strands per ring increases with 

ring number, q.  

As strands are added to the bundle, they form rings with an increasing number of strands per ring. The center 

strand is layer 0. The first ring out from center, ring 1, forms the second layer and 6 strands complete it. The 

second ring has 12 strands, and for a complete ring, q, the number of strands in the bundle is 
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where the first term, Ns(0) = 1 includes the single strand of layer 0. Ns(q) is solved in polynomial form as 
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The result is q + 1 layers, counting q from zero.  

However, because of the closed curvature of the rings, strands of a ring are closer to each other in the ring than 
in a linear configuration, where they are at opposite ends of the linear segment. On each semi-circle, ring 

strands in each semi-circle function as a layer because they are no farther from each other than the ring 

diameter for strands everywhere around the ring. By this rationale, each semi-circle of a ring is a layer, and the 
number of layers is related to the number of rings by 

Msq = 2q + 1 , q = 1, 2,    )1(1
3

4  ssq NM  
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where Msq represents strand layers Ms counted according to the number of semi-circles for all rings (q), 

dependent on number of strands. 

The bundle insulated radius in ring count, q is 

cwsqcwcwbbw rMrqrrr  )12( , q = 1, 2,   

where rb is the (untwisted, uncompressed, non-overlapping-layer) bundle radius to the center of the outer ring 

and rbw is the bundle radius to its outer radius, an additional ring radius of strand radius, rcw. 

For a small number of strands—less than two complete rings, or Ns < 7—the estimates are not of much value; 

geometric bundle analysis is more exacting and for proximity-effect estimates, are not needed because the 

intrabundle effect is approximately zero for twisted wire with Ns < 5. 

Layer Approximation By Bundle Radius  

Another way to estimate layers in a bundle of strand rings is to draw circles through the centers of the strands 

in a given ring, q. The bundle radius, rb(q) is to the center of the strand of insulated wire radius, rcw. The ring 

centers of aligned strands are separated by strand diameter, 2rcw, and 

qrqr cwb  )2()(  , q = 0,    rb = 0, 2rcw , 4rcw ,  

The number of strands that can be placed around the circumference of 2πrb(q) is 
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Only an integer number, Ns of strands is possible though this approximation for Ns can have a fractional value. 

The total calculated number of strands with an outer ring, q is 
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Applying the same rationale as before for the relationship of rings to layers, 

Msb = 2q + 1 , q = 1, 2,    )1(1
π
4  ssb NM  

where Msb represents layers counted according to the number sides for all rings (q) based on bundle radius (b) 

and dependent on number of strands.  

Msb and Msq are tabulated below. The difference of 4/3 and 4/π causes Msb and Msq to diverge with increasing q. 
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Table 1. Calculating layers as a function of rings  

using the two geometric methods. 

q Ns Msb Msq 

0 1 1 1 

0+ 4 2.20 2.24 

1– 5 2.47 2.52 

1 7 2.94 3 

2 19 4.89 5 

3 37 6.84 7 

4 61 8.80 9 

5 91 10.75 11 

 

Msb is based on circular rings whereas Msq is based on adding 6q to each successive ring instead of 2πq. 

Geometrically, it is the difference between arc and secant length, as shown in Fig. 2. The greater length of an 

arc than a secant causes Msb < Msq. 

 
Fig. 2. Msq approximation of Msb. The difference is in the lengths of arc for Msb and secant for Msq.  

Layer Approximation By Bundle And Strand Areas 

The number of strand layers, Ms in a winding bundle can also be approximated by configuring the Ns strands of 

the bundle as a square with Ns
1/2 strands per side. The strand layers in the bundle are 

sshs NMM   

where Msh represents an area-based counting of layers based on a squaring of the bundle into Ns
1/2 strands (s) 

per side and allowing for hexagonally (h) packed strands. 

The previous formulas for bundle layers based on rings ignore how layers pack together. They assume that the 

rings are packed with strand centers of rings aligned, or square layering, not hexagonal layering.  

In contrast, for layer approximations based on area, bundle packing factor, kpb is included in the derivation of 

formulas.[1] The conductive and insulated strand areas differ by the porosity, kpw = Ac/Acw, where Acw is the 

strand area including insulation (and any other spacing between strands). The other factor is the fill factor, kpf 

of the nonconductive spaces between round strands. For the bundle, kpb = kpwkpf. 

A kpf value is derived from a square bundle from the definition of kpb;  
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where Ac = strand conductive area, Acw = insulated strand area, and Abw = bundle area. The value of kpf for 

round bundles is 
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A bundle-layer approximation is then defined by the bundle-to-strand radius ratio with hexagonal packing. 

Defining the area-based, round-bundle layers as Msr and with kpf = π/4, 
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where Msr represents an area-based counting of layers in a round bundle (r). 

This ratio was given previously in rings as Ms(q) = 2q + 1. Equating the new Ms approximation of Msr to Ms(q), 

and solving for q, 
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The values of qr(Ns) are not exactly q as given in Table 2 but are close and are non-integer. Consequently, the 

area derivations of bundle layers results in the number of layers for a given Ns that are close to those resulting 

from ring-based derivations. The four approximations are compared in the following table. 

Table 2. Comparing the different approximations of layers (Ms)  

and the number of rings (q) associated with the different methods. 

q Ns Msb Msq Msh Msr qr 

0 1 1 1 1 1.13 0.06 

0+ 4 2.20 2.24 2 2.26 0.63 

1– 5 2.47 2.52 2.24 2.52 0.76 

1 7 2.94 3 2.65 2.99 0.99 

2 19 4.89 5 4.36 4.92 1.96 

3 37 6.84 7 6.08 6.86 2.93 

4 61 8.80 9 7.81 8.81 3.91 

5 91 10.75 11 9.54 10.76 4.88 

 

The equations for the table values are 
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A somewhat different definition of Msb removes kpb from the formula for Ms. Instead of ratioing rbw to rcw, the 

packing factor is included in a modified rcw that is effectively the strand radius with the packing effect on area 

included, or rcwp. Then the bundle layers of packed radius[2] is defined as 
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By this definition of Ms with kpf taken into account, we see that the square-bundle Msh implicitly includes 

packing. Whether strands are bundled into a square or a round form makes no difference in how they pack 

together, and the hex-layered kpf is the same for both. Consequently, Msb = Msh and ss NM  . This also 

follows from equating square and round bundle areas; 
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The above formulas and their derivations are based on bundles that are untwisted and uncompressed 

(round).[3] Twisted sub-bundles forming a larger Litz-wire bundle also can interpenetrate for small Ns because 

the twist-circle has gaps along its periphery where strands from adjacent sub-bundles can penetrate.[4] 
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