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Laplace Transform Simplifies Analysis Of Realistic SMPS Waveforms 

by Gregory Mirsky, Design Engineer, Deer Park, Ill. 

When making calculations with the rectangular waveforms present in switched-mode power supplies (SMPSs), 
designers try to avoid the difficulties associated with the real shape of these pulses. They ignore the fact that 

these pulses are not actually rectangular as in the ideal case, but rather trapezoidal. Unfortunately, replacement 
of trapezoidal pulses with the ideal rectangular ones may adversely affect assessment of power loss since 
overlapping of turn-on and turn-off times of, for example, transistors in the same column of the bridge, is the 
main source of dynamic power loss.  

While there are "artificial" methods of including the on and off times in the analysis, these may produce false 
results or just be very cumbersome. However, there is a simpler alternative method for performing analysis of 

realistic SMPS waveforms using the Laplace transform.  

This method will be particularly useful for analysis of filters. When designing different kinds of filters, whether at 
the output of an SMPS or on the input power supply line, engineers want to know how the filter affects the 

pulses present in the circuits. Analysis of the interaction of the operating pulses with these filters can 
conveniently be done using the Laplace transform, which, along with MathCAD-15, is a good fit for this type of 
analysis. The author strongly recommends usage of MathCAD-15 or its derivatives as this is the only software 
that provides an easy-to-use symbolic analysis. 

The formula that represents a series of trapezoidal pulses, was constructed by the author a couple of years ago 
and used in some previous publications.[1,2] That formula provides the basis for the application of the Laplace 
transform discussed here.  

But before getting started, it should be noted that while a pulse train may have any number of pulses, the 
Laplace transform may become too long and require more computing resources for the inverse Laplace 

transform when going back from the frequency domain to the time domain. However, this limitation of the 

software can be overcome by limiting the analysis to three or four pulses, which is sufficient to obtain accurate 
results. Consequently, the Laplace transform provides an easy-to-understand-and-use multiplication of transfer 
functions when defining the output function (signal) of a series (parallel) connection of a few electronic units 
like amplifiers and filters. 

This article begins by presenting an expression for a realistic, trapezoidal-shaped pulse train in the time 
domain, and confirming its validity. It’s then shown how the Laplace transform can be applied to obtain the 
response of a simple filter, which is then converted back to the time domain using the inverse Laplace 
transform. Two numerical examples are then presented using this method to obtain the pulse train at the 
output of a low-pass filter. Another example illustrates how the pulse train expression can be used to adjust the 
timing of gate-drive signals for a MOSFET half bridge. 

Defining The Pulse Train And Applying The Laplace Transform 

Let's define the pulse parameters as shown in the picture in Fig. 1.  
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Fig. 1. We can create a pulse of an arbitrary waveform and find a waveform of the resulting 

signal when this pulse is pushed through a filter by applying the Laplace transform. 

The pulse train in question can be described by the following expression in a symbolic form: 

𝑦(t) = ∑ [Φ [(t − n ∙ Ts) ∙
t − n ∙ Ts

ton

−
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To show the expression is correct let's plot this function’s graph at arbitrary values of the pulse train 
parameters:  

nmax = 3 

Ts = 20 µs  

ton = 0.6 µs 

tp = 9.6 µs 

toff = 1.8 µs 
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The pulse train graph is then as shown in Fig. 2. 

 
Fig 2. This graph is a proof of the validity of expression (1). 

Therefore, we have justified the validity of expression (1).  

Now, we can apply the Laplace transform to equation (1) to further use it for defining the resulting expression 
for a pulse train that went through, say, a low pass filter. Hence, the Laplace image of the original per (1) is 

Ly(s) =
(toff−toff∙e−s∙ton−ton∙e−s∙tp ∙e−s∙ton+ton∙e−s∙tp ∙e−s∙ton ∙e−s∙toff)∙(e−Ts∙s+e−2∙Ts∙s+e−3∙Ts∙s+1)

s2∙ton∙toff
   (2) 

Now, define the transfer function (Laplace transform) for a simple low-pass filter as 

Flp(s) =
1

τf∙s+1
                 (3)   

where τf is the filter time constant. 

Therefore, the Laplace image of the pulse train at the output of the low-pass filter will be 

Ly(s) =  Ly(s) ∙ Flp(s)            (4) 

or 

Lf(s) =
(toff−toff∙e−s∙ton−ton∙e−s∙tp ∙e−s∙ton+ton∙e−s∙tp ∙e−s∙ton ∙e−s∙toff )∙(e−Ts∙s+e−2∙Ts∙s+e−3∙Ts∙s+1)

s2∙ton∙toff
∙

1

τf∙s+1
  (5) 

 

Now, we can go back to the time domain by applying the inverse Laplace transform to (5):  
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 Lf(t) = ton ∙ (Φ(2 ∙ Ts − t + tp + ton) − 1) ∙ (2 ∙ Ts − t + tp + ton + τf − τf ∙ e
2∙Ts−t+tp+ton

τf ) 

−toff ∙ (t − τf + τf ∙ e
−

t

τf) + ton ∙ (Φ(3 ∙ Ts − t + tp + ton) − 1) ∙ (3 ∙ Ts − t + tp + ton + τf − τf ∙ e
3∙Ts−t+tp+ton

τf )  (6) 

Example 1: Obtaining The Expression And Waveform For The Filtered Pulse Train  

Plug in the real parameters listed here into equations (1) and (6):  

Ts = 20 µs  

ton = 0.6 µs 

tp = 9.6 µs 

toff = 1.8 µs 

τf = 1 µs 

Then, plot the initial pulse train (before the filter) and the pulse train at the output of the filter (using the 

following expression with nmax = 3) on the same graph as shown in Fig. 3: 

𝑦(t) = ∑ [Φ [(t − n ∙ Ts) ∙
t − n ∙ Ts

ton

−
(t − ton − n ∙ Ts)

ton

∙ Φ(t − ton − n ∙ Ts)]

nmax

n=0

 

                 − (
t−ton−tp−n∙Ts

toff
) ∙ Φ(t − ton − tp − n ∙ Ts) +

t−ton−tp−n∙Ts−toff

toff
∙ Φ(t − ton − tp − n ∙ Ts − toff)] 

 
Fig. 3. An analytic expression for a pulse train of arbitrary shape allows for applying basic 

operations to the pulse train, obtaining plausible results at the output. The filter defines the rise 
and fall times only. 
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Example 2. Obtaining A Filtered Pulse Train At A Higher Filter Time Constant  

In this case, let’s apply the same parameters as in example 1, but with τf = 20 µs. The results for the two pulse 

trains are shown in Fig. 4. 

 
Fig. 4. The filter defines the whole output process slew rate. 

Example 3: Pulse Trains Applied To Half-Bridge-Configured MOSFETs 

The gate-source signals at the half-bridge MOSFETs should be shifted by Ts/2. Thus, one of the signals may be 

 and another one will be . 

These signals based on equation (1) and using the timing parameters from example 1 are shown in Fig. 5. 

 
Fig. 5. The pulses per Fig. 2 cannot be used for driving a half-bridge due to overlapping.    
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Based on the Fig. 5 legend we conclude that the pulse train pulses' rise and fall times should be adjusted to 

avoid overlapping when driving half-bridge MOSFETs. We can accomplish this by adjusting the pulse parameters 
as follows: 

ton = 0.14 µs 

tp = 9.1 µs 

toff = 0.18 µs 

Then, applying these values to the pulse train expression 

𝑦(t) = ∑ [Φ [(t − n ∙ Ts) ∙
t − n ∙ Ts

ton

−
(t − ton − n ∙ Ts)

ton

∙ Φ(t − ton − n ∙ Ts)]

nmax

n=0

 

               − (
t−ton−tp−n∙Ts

toff
) ∙ Φ(t − ton − tp − n ∙ Ts) +

t−ton−tp−n∙Ts−toff

toff
∙ Φ(t − ton − tp − n ∙ Ts − toff)] 

we obtain the waveforms shown in Fig. 6. 

 
Fig. 6. After adjustment of the rise and fall times these pulses can drive half-bridge MOSFETs.   

In the above example, the application of the Laplace transform was not needed. It was sufficient 

simply to adjust some parameters in the expression for the pulse train, y(t), reflecting the changes 
in circuit parameters. However, if filtering was applied to the circuit and distorted the waveforms as 
in Fig. 3, a Laplace transform would immediately reveal what filter parameters would need to be 
tweaked.  

Takeaway  

An analytic expression for a series of trapezoidal pulses provides a versatile means of analysis and simulation of 

diverse parameters of switching power supplies. This expression may be a basis for the SMPS simulation and 
building new SMPS units.   
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For more on the analysis of deadtime in switching waveforms, see How2Power’s Design Guide and do a key 
word search on the terms “deadtime” and “dead time”. 
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