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Optimized Magnetics Winding Design (Part 1): A Discovery Over Fifty Years Late 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

An idea whose time has come, such as calculus in the days of Newton and Leibnitz, can sometimes be slow in 
its diffusion. One simple idea involving the design of magnetic components was delayed in our time by over a 

half century. 

In the mid-1960s, P.J. Dowell published a landmark paper through the IEE in Britain about how to calculate the 
increase in resistance of conductors caused by eddy currents. A current of varying amplitude in a wire can 
induce by a magnetic field B into itself, as dB/dt, eddy-current loops that oppose the central current and cause 

it to crowd to the outside of the wire.  

With a lower current density in the center, the effective cross-sectional area of the wire is reduced—hence its 
increase in resistance, approximated in a wire as that of an area one skin depth deep from the wire surface. The 

resistance of the cross-sectional skin-depth area is that of the eddy-current resistance. 

Dowell derived a 1D field solution for a pair of parallel plates conducting current, much like the layers of 
windings in a transformer. Magnetics textbooks routinely derive and explain it, and how it can be applied to 
magnetic component analysis, which is to say the calculation of winding resistance and therefore power losses 
for a given transformer design. Yet there is also an obvious way to apply it for magnetics design optimization, 
which minimizes winding resistance while applying constraints on certain winding parameters.  

The concepts presented in this new series may be familiar to those who have read my previous works on 

winding design such as references 1 and 2. However, the material is presented here in more of a tutorial format 
with further explanation of key points.  

This part 1 begins with an explanation of how to apply Dowell’s equations to determine optimal wire size at a 
given frequency, and then extends this approach for use with wire bundling and for a specified winding window 
area. 
 

Using Dowell’s Curves to Find Optimal Wire Size At A Constant Frequency 

Most circuit designers steer clear of magnetic component design, except in much-simplified ways. I vividly recall 
in my younger teens thinking about how transformers were the least interesting of all electronics—merely a 
core of metal wrapped with some wire. Transformers lacked the complexity and intrigue of computers and color 
televisions.  

In ordinary circuit design, wire has essentially zero resistance, and to contemplate its actual resistance is to 

become concerned with trifles, so it seemed. But in more recent years, involvement in power electronics led me 
to wonder how best to design magnetic components—transformers and inductors—and this led to an “obvious” 

discovery. 

The most basic limitation on magnetic parts is the temperature where either magnetic properties or structures 
themselves fail. Transformers in power converters are basically power-transfer devices. Their temperature rises 
from heat caused by power dissipation in both windings, the electrical part of the transformer, and core, the 
magnetic part. Dowell’s equation gives the resistance factor by which eddy currents increase wire resistance. At 

a fixed switching frequency (which is typical of most converters) it is the unitless function Fr. Thus, winding 

resistance, 

Rw = FrRδ 

where Rδ is the static (0 Hz) resistance of a wire having conductive radius rc equal to the skin depth at the 

given frequency; Rδ = Rw(rc = δ). Skin depth is a length-constant and is like a spatial time-constant in that it is 

an exponent in an exponential function of distance. The equivalent area in which the crowded current flows near 
the wire surface is one skin depth δ.  

Fr is a mathematically involved function of hyperbolic sines and cosines, but it can be approximated with some 

simple algebra. What is of interest for this article is that in either the exact or approximate equations, Fr is a 

function of two parameters: the number of winding layers M, and the penetration ratio ξ which for round wire is 
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Think of ξr as the wire size normalized to—or given in units of—the skin depth. With constant frequency, δ(f) is 

constant and ξr varies with wire size. Then Fr = Fr (ξr, M) and is usually plotted with ξr on the horizontal axis and 

M as a parameter. Thus, each of the curves in a family of Fr plots holds M constant for each plot. The result is 

shown in the graph of Fig. 1 for M = 1 to 8. The lowest (solid) plot is that of Frw, the isolated-wire case. 

In Fig. 1, a constant frequency is assumed in these calculations, but since the frequency is not specified in this 

case, Fr is plotted against units of skin depth rather than wire gauge. If these curves were plotted at a specific 

frequency versus wire gauge, the curves would look similar to those shown but the wire gauge values would 
shift left or right depending on the frequency. Some examples are shown in reference 1.   

 

 
Fig. 1. Log-log graph of constant-frequency resistance ratio Fr, the increase of round-wire 

resistance from eddy currents at a fixed frequency over resistance at a constant (static) current. 
Fr is plotted against ξr, the round-wire conductive radius in the unit of skin depths at the given 

frequency. Each different plot has a constant number of winding layers M from 1 to 8. The 
bottom (solid) plot is that of a single isolated wire.  

Eddy-current effects have two contributions which add: the skin effect, shown by the lowest isolated-wire plot, 
and the effect that both adjacent turns within a layer and layers of windings have on each other: the proximity 

effect. This second contributor is like an inter-wire skin effect that causes Fr to rise in the medium-ξr region of 

the plots. The more layers, the higher is the resistance caused by the proximity effect.  

The plots do not intersect. However, at very low ξr, the plots converge asymptotically to a slope of –2 (on the 

log-log plot) so that they all have about the same high resistance. These tiny wires, however, do not take up 
much space in a winding window, and many of them can be paralleled as strands of a bundle to increase 

current capability, or ampacity. This is Litz wire: bundled strands of smaller wires.  

Fr decreases for large-size wire because the equivalent ring of δ thickness at its periphery also expands in 

cross-sectional area with expanding circumference. However, if too many turns are required (to keep from 
overheating the core) then the big wire might not fit the core winding window. 

 

Finding Optimal Wire Size With Wire Bundling 

A related aspect of winding design is the geometry of the winding(s). An insulated wire with an insulated radius 

of rcw occupies 2rcw of width along the winding window. For a window of width ww, then the maximum number 

of turns per layer is  
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For a winding of Nb bundle turns with each turn being a bundle of Ns strands, then the total strands of wire in 

the window cross-section is N = NsNb, and the number of layers for a constant N is 

w
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This can be written by substituting ξr of the Dowell graph with one more wire parameter, the porosity kpw: the 

ratio of insulated-wire cross-sectional area Acw to that of the inner conductive area Ac. Then 
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Substituting for rcw in MN results in a relationship between MN and ξr; 
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The idea emerged that eddy-current plots need not be based only on constant layers M, but that M can be 
related to the winding geometry by applying to it various constraints. Substituting this geometrically-

constrained M into Fr as Fr (ξr, MN(ξr)), when plotted, appears in Fig. 2 as the blue (dash) line. 
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Fig. 2. Fr plots of constant layers M versus wire size in number of skin depths. The blue (dash) 
line is Fr(ξr, MN), or Fr when M is allowed to vary such that the winding is geometrically 
constrained to a fixed number of strands per bundle Ns. It has a minimum near ξr = 1. 
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To minimize winding loss, the goal is to minimize winding resistance, and this plot clearly reveals a minimum 

around ξr  1 for a fixed number of strands per bundle. Knowing the transformer drive frequency f (which for 

push-pull converters is fs/2), the skin depth can be found from its formula for copper wire; 

Hz/

mm 5.73
Cu

f
= , 80 °C, Cu 

Then the optimal wire size that minimizes Fr is rc = ξr δCu. Multiple strands of it will usually be needed to 

achieve the current-carrying capacity (ampacity) required by the circuit design at its maximum winding current. 

 

Finding Optimal Wire Size For A Winding Window Area 

A more useful optimization is for a constant winding window. The windings to be fit into the core window are 

allotted a given area and with some more algebra like that used to derive MN, the result for a constant area, 

where kww is the fraction of window area Aw allotted to the winding (Aww = kwwAw), then 
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where kp is the packing factor, the ratio of conductive area in the winding to total area. (kpw is part of kp; in 

total, kp = kpf kpbkpw where kpf is the fill factor among the bundles in the winding, kpb is the fill factor of strands 

within the bundle, and kpw is the porosity caused by wire insulation spacing. Typically, kpf  kpb  π/4  0.7845.) 

When Fr(ξr, MA(ξr)) is plotted, the graph of Fig. 3 results. 
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Fig. 3. Fr plots of constant layers M versus wire size in number of skin depths. The blue (dash) 
line is Fr (ξr, MA), or strand Fr when M is allowed to vary such that the winding is geometrically 

constrained to a constant winding area Aww. It has no minimum but decreases monotonically with 
ξr. For strands in a bundle, Fr has a different shape. 
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The blue (dash) plot continues to decrease for increasing wire size (ξr), but there is more to the optimization 

story, to be taken up in the next part of this series. Meanwhile, all of this is developed more comprehensively 
and in more detail in Power Magnetics Design Optimization (PMDO).[2] If you want an open-source PDF copy 
(about 10 Mbytes), contact me and request a PDF copy through the Innovatia website.[3] 

 
As this series continues with two more installments, it will expand on the techniques for using Dowell’s 
equations to determine optimal wire size for a constant number of layers or strands (part 2) and for a constant 
winding area (part 3.)  
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