
 

 

Exclusive Technology Feature 

 

                                                         © 2025 How2Power. All rights reserved. Page 1 of 6 
 
 

 

ISSUE: May 2025 

Non-Inverting Integrators Are Not Really Integrators (Part 1)  

by Gregory Mirsky, Design Engineer, Deer Park, Ill. 

Integrators find use in a huge variety of electronic devices. Some of them use integrators to perform a 
mathematical operation of integrating analog signals.*  

An example of such an integrator application is a Rogowski current sensor. This type of a magnetic sensor 
utilizes a weak linkage between the ac current carrying bus and a coil placed around this bus that reacts to the 
magnetic field changes caused by the bus changing current. As the output of the Rogowski coil is voltage that 
represents the current deviations in the bus, this voltage is proportional to the differentiated current in the bus.  

To restore the waveform of the current, an integrator is used following the Rogowski coil. The integrator output 

voltage is supposed to be a copy of the bus current waveform. Therefore, the integrator should perform its 
function accurately to restore the shape of the current function. 

Many authors have presented non-inverting schemes for the integrator. However, these circuits produce 
erroneous results. Because of the non-inverting input, the transfer function of a non-inverting integrator obtains 
a zero at the pole frequency, thus destroying the integration function. In this article series, we’ll analyze various 
forms of inverting and non-inverting integrators to confirm this problem and then present examples that 
illustrate the differences in performance. 

Here in part 1, we begin by reviewing and analyzing schematics of integrators with and without phase 
correction. 

*Note: There are also some integrating RC circuits that are used to generate sawtooth waveforms. These are 
sometimes erroneously referred to as integrators.   

Classical Vs. Phase-Corrected Integrator 

Consider the two forms of inverting integrator depicted in Fig. 1.  

  
(a)                                                       (b) 

Fig. 1. Classical inverting integrator (a) and inverting integrator with phase correction (b). 

It is easy to notice that these schematics are dc-unstable since they integrate noise and input bias voltage, 
which is reflected by the output voltage walkaway. There are two main methods of stabilizing the inverting 

integrators, and they will be reviewed in later parts of this series. 

But ignoring the dc instability issue for now, we see that phase correction is provided by adding resistor R2 in 
series with C1. This introduces a pole into the transfer function of the integrator thus improving stability of the 
circuit the integrator is a part of. 

To determine the responses of the two inverting integrator circuits, we begin by noting the feedback impedance 
for each:  
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Z1(s) =
1

s∙C1
          (1a) 

 

Z2(s) = R2 +
1

s∙C1
         (1b) 

       

The integrator transfer functions are therefore: 

G1(s) =
1

s∙C1

R1
          (2a)   

    

G2(s) =
C1∙R2∙s+1

C1∙s

R1
         (2b) 

Simplifying these expressions we get: 

G1(s) =
1

C1∙R1∙s
          (3a) 

G2(s) =
C1∙R2∙s+1

C1∙R1∙s
         (3b) 

To obtain the amplitude-frequency characteristic for each integrator we have to get the modulus of the complex 
frequency response: 

G1(j ∙ ω) =
1

j∙ω∙C1∙R1
         (4a) 

G2(j ∙ ω) =
C1∙R2∙j∙ω+1

C1∙R1∙j∙ω
         (4b) 

Then, multiplying both numerator and denominator by the complex conjugate expression, we get rid of the 
complexity in the denominator: 

G1(j ∙ ω) =
−(j ∙ ω ∙ C1 ∙ R1)

(ω ∙ C1 ∙ R1)2
 

G2(j ∙ ω) =
C12 ∙ R1 ∙ R2 ∙ ω2 − C1 ∙ R1 ∙ ω ∙ j

(C1 ∙ R1 ∙ ω)2
 

Now, define the moduli of both expressions: 

G1(ω) =
ω ∙ C1 ∙ R1

(ω ∙ C1 ∙ R1)2
 

G2(ω) =
√(C12 ∙ R1 ∙ R2 ∙ ω2)2 + (C1 ∙ R1 ∙ ω)2

(C1 ∙ R1 ∙ ω)2
 

 

Simplifying, we obtain: 
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G1(ω) =
1

ω∙C1∙R1
         (5a) 

G2(ω) =
√1+(C1∙R2∙ω)2

ω∙C1∙R1
         (5b) 

Analyzing expressions (5A) and (5B), we notice that the integration time constants of these expressions are the 
same—C1R1—and that G2(ω) is not a pure integrator, but rather a low-pass filter. This is the effect of R2. 

To illustrate, let’s assign some values to the integrator components: 

R1 = 100 kΩ 

R2 = 0.1 kΩ 

C1 = 0.01 µF 

Plugging these values into equations for G1(ω) and G2(ω): 

G1(ω) =
1

ω ∙ C1 ∙ R1
 

G2(ω) =
√1 + (C1 ∙ R2 ∙ ω)2

ω ∙ C1 ∙ R1
 

 yields the plots in Fig 2. 

 
Fig. 2. We see that in the inverting scheme of the integrator integration begins at 0 Hz, and 

amplitude-frequency characteristics diverge at the frequency defined by C1*R2, which means we 
can control content of higher frequencies at the output of the integrator. This is especially useful 

in Rogowski sensors. 

Now, we have to know the influence of the phase-correcting resistor R2 on the integrating capabilities of the 
integrator. To do this we can divide one characteristic over another one and check at what frequency the result 

attains the preset value α. This frequency is defined by the C1*R2 product that allows us to define R2 value at 

known C1: 

Divide (5A) over (5B) and denote the result as α: 
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1

ω∙C1∙R1

√1+(C1∙R2∙ω)2

ω∙C1∙R1

= α          (6) 

Simplifying we get: 

(C12 ∙ R22 ∙ ω2 + 1)
−1

2 = α        (7) 

and solving for ω, we obtain:  

[

√−(α−1)∙(α+1)

C1∙R2∙α

−
√−(α−1)∙(α+1)

C1∙R2∙α

]         (8) 

The real solution requires: 

(1 − α) ∙ (α + 1) > 0         (9) 

which yields: 

 -1 < α < 1 

or rather 

0 < α < 1          (10)  

Assuming  

α =
√2

2
 

which signifies a 3-dB difference, we solve equation (8) for ω: 

ω01 =
√−(α − 1) ∙ (α + 1)

C1 ∙ R2 ∙ α
= 1 x 106

1

s
  

and 

ω02 = −
√−(α−1)∙(α+1)

C1∙R2∙α
= −1 x 106 1

s
      

We can ignore the ω02 solution as negative, and therefore if we plug in our example values for C1 and R2, we 
find 

f01 =
ω01

2π
= 159.155 x 103

1

s
  

Therefore, the amplitude-frequency characteristics diverge by 3 dB at 159.2 kHz.  

Recalling the expression for ω01   

ω01 =
√−(α−1)∙(α+1)

C1∙R2∙α
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we find R2 for C1 = 1 x 10-8 F 

R2 =
√−(α − 1) ∙ (α + 1)

C1 ∙ α ∙ ω01
= 100 Ω 

The phase correction resistor R2 (in further notation R21) depends on coefficient α hyperbolically 

R21(α1) =
√(1 − α1) ∙ (1 + α1)

C1 ∙ α1 ∙ ω01
 

as illustrated by the plot in Fig. 3. 

 
Fig. 3. It is reasonable to select the phase correction resistor value corresponding to α closer to 1 

(0.707 or 3 dB is optimal) to keep the integration frequency range wide enough. But too low 
values of this resistor may not help suppress possible oscillations in the system. There will be 

further discussion on this topic in future articles. 

The Takeaway 

As this analysis has demonstrated, the inverting integrator is a real integrator since its amplitude-frequency 
characteristic begins at zero hertz and extends down to infinity or any value that can be set up by design. The 
phase correction does not affect this feature. In part 2, we’ll analyze the response of a non-inverting integrator.  
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