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Non-Inverting Integrators Are Not Really Integrators (Part 2)  

by Gregory Mirsky, Design Engineer, Deer Park, Ill. 

The first part of this series dedicated to different types of integrators described the standard inverting integrator 
circuit and a variant with phase correction. Through analysis, it was shown that inverting integrators (with or 

without phase correction) are real integrators because their amplitude-frequency characteristics are down 
sloping at a constant rate unlimitedly, assuming there are no parasitic parameters. 

Now, it is time to review non-inverting integrators, which are widely promoted[1-3] as proposed integrator 
solutions and draw some conclusions about their integrating abilities. 

Non-Inverting Integrators With and Without Phase Correction  

Consider the two forms of non-inverting integrator depicted in Fig. 1.  

      
(a) (b) 

Fig. 1. A so-called non-inverting integrator (a) and a variation with phase correction (b).  

For these circuits, the transfer functions are 

G3(s) = 1 +
1

C1 ∙ R1 ∙ s
 

Simplifying and factoring yields 

G3(s) =
C1∙R1∙s+1

C1∙R1∙s
         (1a) 

G4(s) = 1 +
R2 +

1
s ∙ C1

R1
 

Simplifying and factoring yields 

G4(s) =
C1∙R1∙s+C1∙R2∙s+1

C1∙R1∙s
        (1b) 

Converting to the frequency domain, these responses become 

G3(j ∙ ω) =
C1∙R1∙j∙ω+1

C1∙R1∙j∙ω
         (2a) 

G4(j ∙ ω) =
[C1∙(R1+R2)]∙j∙ω+1

C1∙R1∙j∙ω
        (2b) 

http://www.how2power.com/newsletters/2506/index.html
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Removing the imaginary expression from the denominators by multiplying them by the complex conjugate we 

get: 

G3(j ∙ ω) =
(C1∙R1∙j∙ω+1)∙[−(C1∙R1∙j∙ω)]

(C1∙R1∙ω)2
       (3a) 

G4(j ∙ ω) =
[[C1∙(R1+R2)]∙j∙ω+1]∙[−(C1∙R1∙j∙ω)]

(C1∙R1∙ω)2
      (3b) 

which then become 

G3(j ∙ ω) =
C12∙R12∙ω2−j∙(C1∙R1∙ω)

(C1∙R1∙ω)2
        (4a) 

G4(j ∙ ω) =
C12∙(R1+R2)∙R1∙ω2−j∙C1∙R1∙ω

(C1∙R1∙ω)2
       (4b) 

The moduli of these expressions are the amplitude-frequency characteristics we seek: 

G3(ω) =
√(C12∙R12∙ω2)2+(C1∙R1∙ω)2

(C1∙R1∙ω)2
  

Simplifying and factoring yields 

G3(ω) =
√C14∙R14∙ω4+C12∙R12∙ω2

C12∙R12∙ω2         (5a) 

G4(ω) =
√(C12∙R12+2∙C12∙R1R2+C12∙R12)∙ω2+1

C1∙R1∙ω
      (5b) 

Simplifying we get the following amplitude-frequency characteristics: 

G3(ω) =
√C12 ∙ R12 ∙ ω2 ∙ (1 + C12 ∙ R12 ∙ ω2)

C12 ∙ R12 ∙ ω2
=
√1 + C12 ∙ R12 ∙ ω2

C1 ∙ R1 ∙ ω
 

G4(ω) =
√C12 ∙ (R1 + R2)2 ∙ ω2 + 1

C1 ∙ R1 ∙ ω
 

To illustrate the responses of these two circuits, let’s assign component values. 

R1 = 100 kΩ 

R2 = 0.1 kΩ 

C1 = 0.01 µF 

Plugging these values into the expressions for G3(ω) and G4(ω). 

G3(ω) =
√1 + C12 ∙ R12 ∙ ω2

C1 ∙ R1 ∙ ω
 

G4(ω) =
√C12 ∙ (R1 + R2)2 ∙ ω2 + 1

C1 ∙ R1 ∙ ω
 

produces the responses plotted in Fig. 2. 
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(a) (b) 

Fig. 2. Example plots of responses for the non-inverting integrator (a) and non-inverting 
integrator with phase correction (b) from Fig. 1.   

For reference, recall that the inverting integrators from part 1 had the responses repeated here in Fig. 3.  

 
Fig. 3. With the inverting integrator circuits analyzed previously, integration begins at 0 Hz, and 
amplitude-frequency characteristics diverge at the frequency defined by C1*R2, which is a point 

3 dB below the limit line for the non-inverting circuits. 

The Takeaway 

A non-inverting integrator has a very limited area of integration since it has a path of a direct signal pass from 
the input to the output. Its integration frequency band is narrow since it’s limited by the unity gain of the 

integrator, which stems from the non-inverting connection of the integrator. Therefore, a non-inverting 
configuration is never the best choice for an integrator. 
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