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ISSUE: July 2025 

Motor Control For Designers (Part 1): Basic Principles Of Motor Theory  

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

With the rising popularity of electronically commutated motors such as brushess dc (BLDC) motors, permanent 
magnet synchronous motors (PMSM) and variable reluctance (VR) motors across a range of applications, 
requirements for motor control and motor drive design are growing. For electronics engineers seeking 
proficiency in these topics, it’s necessary to learn not only how the controllers and inverters operate, but also 
how the motors themselves work. Likewise, motor designers may benefit from an understanding of how the 
circuits driving the motors function.   

This article kicks off a mini-course on motors and circuits that aims to inform both the circuit and the motor 
designers by covering the following topics: 1) motor theory, 2) motor design, 3) motor-drive design, and 4) 

motion control. As a single article would be insufficient to adequately introduce any of these topics, each will be 
addressed in an article series containing about 5 to 8 articles. The goal in publishing these four series—which 

will be presented in the stated order with all parts numbered sequentially according to their appearance in the 
overall series or mini-course—is to convey a working design knowledge of electric machines and the electronics 
and software to control them.  

With regard to the first subject, various textbooks on motors have existed for decades and I will share my 
recommendations on those I consider most useful for learning motor theory. However, while those texts are 

mainly oriented to analysis, this mini-course will be design-oriented.  

In this part 1 article, I’ll be introducing the principles of motor theory, identifying the key terms, concepts and 
relationships in electricity and magnetism that are needed to explain how motors work. I’ll set the table for this 
discussion by briefly reviewing the development of motor theory. But before delving further into this discussion 

of motor principles, I’ll say more on the scope of the first two series within this mini-course. 

What Will Be Covered 

In presenting the four series on motor theory, motor design, motor-drive design, and motion control, the 
emphasis in this mini-course will be on permanent-magnet synchronous (PMS) motors with peripheral attention 

given to variable-reluctance (VR) motors and none to induction motors. Development is for rotational and not 
translational motors, although it is shown how conversion of the equations is rather simple.  

The series on motor theory will cover the fundaments of motors, starting with what they are mechanically, and 
then present derivations of how motors with teeth and windows in their stators develop torque. This series will 

address various basic aspects of motors: basic E & M (part 1), the torque-current relationship from the Lorentz 
force equation, then from field energy; inner and outer rotors, pole-pairs, phase-windings and their 
configurations, their induced-voltage waveforms, and how to sequence drive to them, and then the important 
electrical-mechanical-analogy model of a motor. Then follows motor performance shown by the (quasistatic) 

torque-speed graph and the properties of T(ωme). 

The second series, on motor design, will be approached from a motor-drive designer viewpoint, showing how 
the torque-speed curve is modified by mechanical geometric (radius, length, magnet thickness) and electrical 
(turns and wire size) changes in the motor. The series will go a little deeper than this, deriving the optimal 

width of the air gap between rotor and stator and how the air gap affects motor behavior. This knowledge will 
give power-circuits engineers deeper insight into the load of their motor-drive circuitry. The drive will usually 
have feedback and the motor is within the feedback loop. Therefore the motor properties must be known and 

optimized to do control design. 

The Origins Of Motor Theory 

Various textbooks on motors have existed for decades. Electric machines courses are typically found in the 
electrical engineering curricula of engineering schools. Historically, motor theory was worked out by Karl August 
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Rudolph Steinmetz (Charles Proteus Steinmetz), a poor, hunchbacked German immigrant passing through Ellis 
Island in the early 20th century.  

His theoretical acumen became known to people at General Electric (GE) while he was employed by a small 
electric company whose owner took him in at the time of his immigration. Steinmetz’s loyalty to the owner for 

helping him at such a critical time required that GE buy the entire company to obtain Steinmetz. It was 
Steinmetz who worked out the electrical theory, using steady-state phasor theory, to explain Nikola Tesla’s 
induction motor invention. 

During the first half the of the twentieth century, big advances in the understanding of motors occurred about 
once a decade, originating from GE motor research in Schenectady, NY, until the final refinements were made 

by Purdue professor Paul Krause, also from GE, in the 1960s. Another GE master of motors, Tom Lipo, became 
a professor at the U. of WI at Madison, another major motor school. (My early mentor, Allan Plunkett, also 
came from GE.) It can truly be said that knowledge of motors in the world today emanated out of Steinmetz’s 
work at GE. 

Early motors were applied as mechanical power sources and run at a constant speed. This steady-state 
operation can be understood with fixed-frequency phasor theory found in passive-circuits books, though a more 
complete theory involving general motion uses vectors. Even today, many of the motor books—maybe the one 
you used in school—are still based on steady-state phasors.  

The book I recommend is that of Krause and Wasynczuk, Electromechanical Motion Devices (McGraw-Hill) 

because it develops the more general vector theory. (The Purdue U. armory might still have some copies of the 
most rigorous “gold standard” book, Analysis of Electric Machinery by Krause, in paperback form.) 

What is presented here is a somewhat simplified treatment about how to design. Electric machine theory is 
considered a difficult topic, but that might be largely a result of a lack of clear and simple understanding of it 

among its practitioners. The treatment developed here keeps it simple; algebra and some basic calculus are all 
that are needed, plus some understanding of basic mechanics. Electric machines are electrical ↔ mechanical 

energy conversion devices by definition. All of them convert in both directions; all motors are generators.  

There are three basic ways of producing torque in (rotational) motors and this series will involve two of them— 

synchronous and variable-reluctance (VR) machines—and will omit induction machines. Electric machines can 
mechanically operate in translation (as do levitated trains) or rotation. Rotation is more common and is chosen 
for these series. Conversion between them is fairly simple, that of moving radius or distance r around in 

equations. To illustrate, for right angles, torque T = r∙F and power P = T∙ = (r∙F)∙(u/r) = F∙u where  is 

rotational speed and u is r∙ and is translational speed. T and  are rotational variables and F and u are 
translational or linear.  

Permanent-magnet synchronous (PMS) motors have risen to a place of prominence, found in consumer items, 
hard disk-drives, scattered about within cars and trucks, and are prominent in electric vehicles. VR machines 
are also on the rise. 

Both PMS and VR machines have a major advantage (as do induction motors) over “dc brush” motors and 

wound-rotor synchronous motors; they do not have moving electrical contacts in the form of slip rings or 
brushes—components that are inherently unreliable and subject to wear. With permanent magnets (PMs), there 
is no need to deliver current to the rotor, nor do VR machines have rotor currents. 

Electric machines couple their electrical and mechanical sides through either a magnetic or electric field. For the 
ranges of voltage and current typical in electronics today, magnetic materials such as electrical steel or ferrites 

are capable of a higher energy density than dielectric materials as found in capacitors. Consequently, the focus 
in this series is on electromagnetic energy conversion.  

A capable power-electronics engineer can optimize the design of both power circuits and their magnetic 
components to achieve an overall optimal design. Likewise, good motor-drive designers have an understanding 

of the “magnetic component”—the motor itself—in the design of a motor-drive.  
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That is why the second series of this mini-course covers some basic aspects of motor design. How do motor 
characteristics change when windings have more turns of smaller wire, or the geometry is changed? And how 
does that optimally couple to both motor-drive electronics and the mechanical load? These questions require 
design knowledge of both power electronics and motors. 

Quantities Of Electricity And Magnetism 

This series starts with the most basic quantities and their units, in quick review, given in Table 1. 

 
Table 1. Quantities of electricity and magnetism.  

Electricity Field-Circuit Relationships Magnetism 

Charge, q in coulombs, C 

 

Field flux,  in Vs 

Electric field intensity (strength), E in 
V/m 

Magnetic field intensity (strength), H in 
A/m 

Electric field density, D in C/m2 Magnetic field density, B in Vs/m2 

Permittivity,  in F/m Permeability,  in H/m 

Capacitance, C in farads, F Inductance, L in henrys, H 

 
(Circuit-referred) current, i 
in amperes, A = C/s 

 = circuit-referred flux = N in Vs 

 Current density, J in A/m2  

 Conductivity,  in (∙m)–1  

D = E J = E B = H 

Electric potential, voltage, V in volts, 
V 

Resistivity,  = 1/ in m 

Area, A in m2 

Magnetic scalar potential (field-referred 

current), Ni in amperes, A 

v = El l = length in meters, m Ni = Hl 

C = q/v Conductance, G = A/l L = /i 

C = A/l Circuit-referred L = N2L  
Field inductance L = single-turn L = 

A/l  

i = Cdv/dt i = Gv     v = iR v = Ldi/dt 

q = DA   = BA 

Electric energy, W = Cv 2/2 = qv/2 

 
 Magnetic energy, W = Li 2/2 = i/2 

 

Electric and magnetic quantities appear in equations and when voltage and current are exchanged in them, the 
resulting equations apply to the other, and the quantities are duals. For instance, capacitance C and inductance 
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L are duals because exchange of v and i in their v-i equations results in an equation for the other. The middle 
column of Table 1 relates electric and magnetic field quantities to circuit quantities at the circuit terminals. 

Magnetic Reference Frames 

Because of winding turns N, the effect is to “amplify” circuit current as it appears in the magnetic-field path and 
induced voltage as it appears across the winding terminals in the circuit. Circuit quantities relate to winding 
terminal voltages and currents through the referral factor N and field quantities corresponding to them relate to 

the field. Consequently, circuit current i appears to the field as field current Ni = N∙i. Winding terminal voltage v 
is referred to the field as induced per-turn voltage v/N or field voltage. The field resistance refers to the circuit 
resistance as field voltage v/N over field current N∙i as 

2 2

/ / ckt
fld

Rv N v i
R

N i N N
= = =


 

The corresponding field resistance is lower than the circuit resistance by N 2. Table 2 summarizes referrals. 

Table 2. Circuit and field referrals of corresponding quantities. 

Reference-Frame Current Inductive quantity Field quantity Voltage 

Electrical circuit 
(terminal quantities) 

i Inductance, L Flux  = N v 

Magnetic field 
Field current Ni = 

N i 

Field inductance  
(permeance) L Field flux  Field voltage v/N 

 

Maxwell's Equations 

Three of the four basic equations of Maxwell find use in motor theory in a simplified form with right-angle 

geometries in motors. 

Faraday's Law 

To begin, let’s consider an expression of Faraday’s Law:  

  •−=•



C St
dad nBlE ˆ  

This expression means that a changing magnetic flux BA through an open surface S of cross-sectional area A of 

a magnetic path induces voltage El into an electric conductor bounding that area (a winding), with closed (but 

not shorted) wire path of curve C. The component of field flux normal to the open surface is  = BA. 

Considering only this right-angle field flux, Faraday’s Law can be reduced to  

Simplified form: 
dt

d
v


−=  where  = N = NBA and v = El 

where v = induced voltage,   = circuit-referred flux,  = field-referred flux, N = turns, B = magnetic field 
density (amplitude), A is the area through which  is bounded and l is the length of the winding path bounding 
A; E is the electric-field intensity, inducing a voltage into the winding surrounding the magnetic path of B. 

Ampere's Law 

Next, let’s consider a form of Ampere’s Law: 
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   •+•=•



C S St
dadad nDnJlH ˆˆ

 

This expression can be interpreted as follows: A field-referred current J A plus a changing electric-field flux D A 

though an open surface S of cross-sectional area A gives rise to a field-referred current Hl in a closed path, 
curve C, bounded by A having boundary length l. The component of Ni = J∙A and q = D∙A through (normal to) 

the open surface S is Hl. Right-angle geometry reduces Ampere’s Law to  

Simplified form: 
t

q
iNlH




+=  where q = DA and Ni = JA 

The second term, ∂q/∂t, is the displacement current which is insignificant in high-resistance magnetic materials. 
Hence, the magnetic field intensity H around the closed magnetic path of length l is produced by a field current 

Ni = N∙i. The circuit current i at the terminals of a winding with N turns appears in the magnetic path as field 

current. 

Gauss's Electric Law 

The electric flux from charge out of closed surface S equals the charge in the volume S encloses; 

  =•S V dvda nD ˆ  

This equation would apply to electrostatic motors (as in the ophthalmic probes of phacomachines of eye 
cataract surgery) but we will not need it for electromagnetic motors. Nevertheless, considering only the flux 
normal to the surface, Gauss’s Electric Law reduces to 

Simplified form: DA = q 

Gauss's Magnetic Law 

Finally, we come to an expression of Gauss's Magnetic Law:  

 =•S da 0n̂B  

The net magnetic flux out of a closed surface is zero. Flux exiting a closed surface must equal the flux entering 
it, resulting in closed magnetic paths. This applies as much to magnetic fields in motors as in transformers. 
Again, considering only the flux normal to the surface, leads to  

Simplified form:  = BA = 0, closed surface (closed path) 

Magnetic-Electric Analogs 

Current in circuits travels in closed paths as do magnetic fields in magnetic circuits. Because of electric and 
magnetic circuit duality there are corresponding magnetic laws to Kirchhoff’s current and voltage laws. Table 3 
summarizes the duality. 

 

Table 3. Electric and magnetic circuit analogs. 

Electric circuit quantity Magnetic circuit quantity 

Current, i Magnetic field flux,  

Voltage, v Field current, Ni = Ni 

Conductance, G Field inductance, L 
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where L is field inductance, the per-turn-square inductance of a single turn. (In magnetics catalogs, L ≡ AL.) 

There is no capacitance analog for this aspect of inductors, and the full equation relating circuit and field 
inductance is 

L= 2NL  

Magnetic Ohm's Law 

The “Ohm’s Law (L)” of magnetic closed-loop circuits is 

 = L(Ni)  ML 
ML is analogous to Ohm's Law when expressed using conductance: 

i = Gv           L 

ML refers to the electric circuit as circuit quantities, where magnetic field flux  is referred to the electric circuit 
by N as circuit flux 

iLiNN === )( 2 L  

Magnetic Kirchhoff's Laws 

The electric-circuit KCL is the familiar 

0=
node

i   KCL 

From Gauss's Magnetic Law, 

( ) 0
node

B A Ni = =  =  L  MKCL 

And the circuit KVL is 

0=
loop

v  KVL 

From Ampere's Law, 

 =
loop

iNlH  

This can be expressed in  and L as 

  ==








 


=








iN

l

A

AB
l

B

loop L




 

The relationship between B and H is B =  ∙H. Applying ML, the last equation is 
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iN =
L


 

The sum of the magnetic  /L drops around the magnetic loop must equal the Ni source on the right side of the 

equation. Therefore 

 =
loop

iN 0
  MKVL 

In a motor with a magnetic-steel stator core in series with an air gap, 














+=

gapcore LL


iN

 

With magnetic analogies of L, KCL, and KVL, and with the three basic equations of Maxwell, we are ready to 
proceed with motor theory. 

Inductance From Geometry 

To prepare for motor magnetics, we work through an example problem in finding inductance. See Fig. 1. 
Assume the magnetic field B is parallel to the length axis l within the solenoid.  

 
Fig. 1. Long solenoid with r << l, to approximate the magnetic path as shown. 

Furthermore, assume r << l. Then for N turns around the solenoid of radius r, 

( )d N d
L N

di di

 
= =   

B A =   

Hl = Ni 

Substitute for H in the expression for B: 

l

iN
HB

)( 
==


  

And substitute B into the flux equation, 
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N i
A

l
 

 
=   
 

 

Then 

 

The cross-sectional area of the magnetic path within the solenoid is about 

A = r 2 

Outside the solenoid, the field is also in air and is assumed to have a similar path cross-section. The resulting 
solenoid inductance approximation is thus 

2
2 π

solenoid

r
L N

l

 

   
 

 

With this background, we are ready to begin development of electric-machine theory in the next article. 
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For further reading on motors and motor drives, see “A Practical Primer On Motor Drives”. 
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