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Current-Mode Controlled DC-DC Regulators (Part 4): Small-Signal Behavior Of The 
CC Loop 

by Timothy Hegarty, Texas Instruments, Phoenix, Ariz. 

This article, part 4 of a multipart series, considers a dc-dc regulator with constant-current (CC) or constant-
voltage (CV) output regulation, depending on the operating condition and application requirement. In particular, 

this installment examines the small-signal behavior of the CC loop and its compensation. 

In part 1, I reviewed the small-signal behavior[1] of the CV loop, including considerations for slope 
compensation, and presented the control-to-output transfer function for a buck regulator. In part 2, I examined 
a compensation design[2] for the CV loop, while simultaneously optimizing the load transient performance. Part 

3 outlined incumbent solutions[3] for the CC circuit, but these were quite cumbersome, essentially requiring 

modification of a CV regulation scheme by supplementing the feedback loop with external circuits.  

This led to the definition of a CC-CV regulator with a novel dual-loop architecture[3] activating either the CC or 
CV error amplifier at a given time, thus minimizing loop interactions and yielding a seamless handoff from CC to 

CV and vice versa. I then described a synchronous buck controller with this CC-CV implementation (the 
LM5190-Q1) that offers accurate current-regulation performance, a low external component count and reduced 
cost. 

This fourth installment builds on part 3 by pursuing the relevant small-signal transfer functions for the CC loop. 
Designing the CC and CV loops with similar small-signal dynamics enables the use of a shared compensation 

component network. Bode plot simulations of the loop response in CC mode, based on a commercially available 
CC-CV synchronous buck converter (the LMG708B0), illustrate the small-signal characteristics of the dual-loop 
architecture. 

Review Of The Dual-Loop CC-CV Architecture 

Fig. 1 shows a dc-dc regulator schematic using the LMG708B0 gallium nitride (GaN) synchronous buck 
converter[4] from Texas Instruments (TI). The integrated circuit (IC) incorporates the power switches, gate 
drivers, bootstrap circuit and a buck controller that includes CC-CV functionality. 

As shown in Fig. 2 by the structural diagrams for the CV and CC loops of the converter, this implementation is 

unique to the LMG708B0 and the LM5190 in that it selects the minimum of the currents from the 
transconductance error amplifiers in the CV and CC loops. The minimum function block, designated as the IMIN 
selector and highlighted in red in Fig. 2, performs this function by selecting whichever error current is lower. 

For example, the CC loop takes control when the IMIN selector directs the current from the current-loop error 

amplifier. The selected error current then flows in a shared Type II compensation network, the resultant 
compensation (COMP) voltage becoming the reference command of the inner current loop of the peak current-
mode architecture. Only one error amplifier is active at a given time, thus minimizing loop interactions and 
yielding a clean transition and seamless hand off from CV regulation to CC and vice versa. 
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Fig. 1. Typical circuit schematic of a synchronous buck converter with CC-CV. 

 
Fig. 2. Functional diagram of the buck converter highlighting the CV loop (a) and CC loop (b). 

As highlighted in Fig. 2b, the CC loop requires just two external components connected at the IMON pin to 
establish the CC loop setpoint and CC loop stability. IMON acts as a monitor of the average inductor current and 
establishes a slower average current-limit function, which is typically set below the conventional instantaneous 

peak inductor current limit typically procured with peak current-mode control.  

IMON sources a current proportional to the voltage sensed across the shunt, RS. The CC loop starts to regulate 

the current when the IMON voltage reaches the 1-V reference of the current-loop error amplifier. For simplicity, 
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Fig. 2 does not highlight the peak current-mode inner loop—including the current-sense amplifier and slope 
compensation ramp—even though it is relevant for both CV and CC modes. 

Designing The CC Loop 

Based on the circuit in Fig. 2b, use equation 1 to select the IMON pin resistance for a given CC setpoint: 

-

- -

ref CC

imon
m imon out CC S offset

V
R

g I R I
=

+
  (1) 

where Vref-CC = 1 V is the current-loop error amplifier reference voltage, gm-IMON = 4 mS is the IMON amplifier 

transconductance, and Ioffset = 25 µA is the IMON offset current. Equation 2 extracts the output current from the 
IMON pin voltage as: 

( )

-

imon imon offset

out
m imon S

V R I
I

g R

−
=    (2) 

A capacitor designated as Cimon in Fig. 2 removes the switching ripple to provide a representation of the average 

inductor current, which effectively corresponds to the output current. 

Control Loop Block Diagram 

Fig. 3 depicts the small-signal block diagram of the CC-CV system, where ( )csv s  is the current-sense voltage 

and ( )compv s is the COMP voltage, the command for the inner peak current loop. Parameters -m CVg  and -m CCg  

denote the voltage-loop and current-loop error amplifier transconductances, respectively. SG  is the current-

sense amplifier gain, and ( )imonG s  is the current monitor gain. 

 
Fig. 3. Small-signal block diagram of the CC and CV loops in a peak current-mode architecture. 
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Deriving The CV Loop Transfer Function 

To simplify Fig. 3, notice that the output impedance relates the duty-cycle-to-inductor-current and duty-cycle-
to-VOUT transfer functions,  

( )
( )

( )

dv
di

out

G s
G s

Z s
=    (3) 

For a purely resistive load,  

( )
esr

-

1
1

( )
1

1

esr out
out load load

load esr out

p load

s

sR C
Z s R R

ss R R C





+
+

= =
+ +

+

 (4) 

where the parameters -p load  and esr  are the load pole and output capacitor ESR zero, respectively. 

Fig. 4 illustrates the small-signal block diagram of the CV loop, obtained by simplifying Fig. 3. 

 
Fig. 4. Small-signal block diagram of the CV loop. 
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Recalling equation 10 from part 2, - - ( )comp to voutG s  is the COMP-to-VOUT (control-to-output voltage) transfer 

function derived in Ridley[2] and expressed as 

-t - -t -2

2

1
1 1

( ) ( )

11 1

load esr out esr
comp o vout comp o vout

load outi d

pd n n

s

R sR C
G s A H s

R C sR k s ss
k Q



 

+
+

= =

++ + +

 (6) 

where -t -
load

comp o vout
i d

R
A

R k
= . 

( )H s , defined in part 2 as the high-frequency extension in the COMP-to-VOUT transfer function designed to 

model the modulator sampling gain, is a pair of complex poles at half the switching frequency.  

Fig. 5 shows the COMP-to-VOUT transfer function for the converter in Fig. 1, where the CV setpoint is 12 V and 
the load is 20 A. 

 

Fig. 5. Magnitude (a) and phase (b) of the COMP-to-VOUT response, -t - ( )comp o voutG s . 

The CV loop gain is the product of the VOUT-to-COMP (compensator) and COMP-to-VOUT (plant) transfer 
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Equation 8 reduces the dc gain terms in equation 7 to 

- --C
-C -t - -C -C

-

ref CV ref CVload load m V
cv fb m V comp o vout fb m V m V

i d out i d i d out CV

V VR R g
A K g A K g g

R k V R k R k I
= = = =  (8) 

Fig. 6 shows the CV loop gain for the converter in Figs. 1 and 2. 

(a) (b)
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Fig. 6. Magnitude (a) and phase (b) of the CV loop gain, ( )cvT s . 

Deriving The CC Loop Transfer Function 

By simplifying Fig. 3, Fig. 7 represents the small-signal block diagram for the CC loop, which has an error 

amplifier of transconductance gm-CC and a compensation network impedance shared with the voltage loop. 

 
Fig. 7. Small-signal block diagram of the CC loop. 
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Equation 10 expresses the CC-loop compensator transfer function as 
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If - - ( )comp to vcsG s  is the control-to-current-sense-voltage transfer function, using equations 4 and 6 yields  
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or, more simply, equations 12 and 13: 
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S

comp o vcs
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R k
=    (13) 

Fig. 8 shows the COMP-to-VCS transfer function for the converter in Fig. 1. In this case, kd = 1.22, and the load 

pole and zero are at 2.45 kHz and 2 kHz, respectively. 

 

Fig. 8. Magnitude (a) and phase (b) of COMP-to-VCS response, -t - ( )comp o vcsG s . 

The current loop gain is the product of the VCS-to-IMON (IMON filter), IMON-to-COMP (compensator) and 
COMP-to-VCS (plant) transfer functions. Thus, the CC loop gain is expressed simply by  
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Selecting the IMON pole to cancel the load zero, the CC loop gain expression simplifies to  

(a) (b)
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And the dc gain term is 

- - -t - - -
S

cc m CC m imon imon comp o vcs m CC m imon imon
i d
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A g g R A g g R

R k
= =  (16) 

When the CC loop engages, the voltage on the IMON resistor regulates to the CC-loop error amplifier reference 
voltage such that  

( )- - -ref CC m imon imon S out CCV g R R I=   (17) 

and thus the dc gain term becomes 

( )
-- -
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-

ref CCm CC m CC
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A g R R

R k R k I
= =            (18) 

Equation 18 is of similar composition to equation 8 for cvA of the CV loop. 

Table 1 synopsizes the pertinent expressions for the CV and CC loops. 

Table 1. CV and CC loop parameters. 
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If using the same gm and Vref for both the voltage loop and current loop, neglecting the ESR zero, and setting 

the CC loop IMON pole to cancel the load zero, the CV and CV modes then have approximately the same loop 

transfer function. Thus, it is possible to design the small-signal dynamics of the CV and CC loops to be almost 
identical, and to use one compensation network to cover both operating modes. 
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Fig. 9 compares the CV and CC loop gains for the converter in Fig. 1. The plots largely align except at high 
frequency, as expected, with the ESR zero at 240 kHz in this example contributing phase lead. The plots fully 
align if the ESR is negligible. 

 
Fig. 9. Magnitude (a) and phase (b) comparison of the CV loop gain, ( )cvT s and CC loop gain, 

( )ccT s . 

Circuit Simulation 

Based on the converter schematic of Fig. 1 and the control circuit architecture of Fig. 2, Fig. 10 presents a 
SIMPLIS simulation model for a CC-CV buck converter. The element with reference designator X1 in Fig. 10 is 
the SIMPLIS clock edge trigger to locate the periodic operating point of the circuit before running frequency-
domain analyses. 

 
Fig. 10. SIMPLIS simulation schematic of the proposed CC-CV architecture. 
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Table 2 summarizes the circuit operating conditions, power-stage component values and control circuit 
parameters. Matching the theoretical example previously, the load in this model requires CV and CC regulation 
setpoints of 12 V and 20 A, respectively. 

Table 2. Parameters for a CC-CV buck converter design. 

Power-stage parameters Control-circuit parameters 

Vin 48 V LO 4.7 µH GS 20 gm-CV 1 mS 

Vout-CV 12 V RS 1 mΩ Se 180 mV/µs gm-CC 1 mS 

Iout-CC 20 A Cout 132 µF gm-IMON 4 mS REAout 25 MΩ 

FSW 400 kHz Resr 6 mΩ Ioffset 25 µA Cbw 20 pF 

 

Fig. 11 shows simulated Bode plots of the CV and CC loop gains, which largely align with the theoretical results 
of Fig. 9. Specifically, the crossover frequency and phase margin in Fig. 9 and Fig. 11 match closely, confirming 
the unified CC-CV loop approach. As before, the ESR zero creates a phase boost above 10 kHz. The slight phase 
difference between 600 Hz and 6 kHz is a result of the IMON pole not perfectly canceling the load zero in the CC 
loop-gain expression. 

 
Fig. 11. Simulated Bode plots of the CV and CC loop gains, ( )cvT s and ( )ccT s . 

Summary 

A primary objective of this article was to derive the small-signal response for the CC loop of a buck regulator 
based on a buck converter IC with an enhanced dual-loop CC-CV architecture. Results from simulation validate 
the theoretical analysis of the CC loop. Part 5 of this article series will examine design and performance 
characterization of the CC loop in a CC-CV buck regulator. 
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