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Motor Control For Designers (Part 5): Deriving Force Production From Magnetic 
Energy 

by Dennis Feucht, Innovatia Laboratories, Cayo, Belize 

In two earlier articles (parts 2 and 3), we used the Lorentz force equation to derive expressions for the force or 

torque produced by motors. In particular, this led us to a definition of me, the conversion factor that relates the 

electrical and mechanical operation of a motor, and the associated equations using me are the basis for a motor 

model. 

The Lorentz force method of expressing motor force or torque was a good starting point as it’s the easiest to 
envision geometrically. However, there’s an alternative method, which develops motor theory from an energy 
standpoint,   

 

and we explore this method here. Will this yield the same expression for me? Let’s find out. Perhaps it will also 

lead to some new revelations about PMS and other motors? In this part, we also return to the subject of motor 
modeling from part 4 by discussing how to model multiphase windings.  

Relating Energy To Magnetic Flux Density And Volume 

Power, the rate of change of energy W, is 

( )
( )

    ( ) ( )

dW d d N B A dB
P i v i i N i A

dt dt dt dt

dB dB dB
H l A A l H V H

dt dt dt

  
= =  =  =  =   
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From previous construction of design equations, circuit flux  across the stator windings is the winding turns N 

times field flux  or  = N∙(B∙A). Previously, we let the winding area A swept out by the fixed magnet field Br be 

variable as dA/dt. If instead we look at a changing magnet flux sweeping across a fixed winding area A, then 

flux through it varies by dBr /dt, as in the above equations. The magnetic path begins at the magnets, traverses 

the air gap, proceeds through the stator “core” or armature to the opposing pole teeth, gap and through the 
opposite-polarity magnet to close the path. Closed magnetic paths always involve pairs of poles.  

The winding current referred to the field in the magnetic path is N∙i = H∙l by Ampere’s Law, where l is the 

magnetic path length and H is the field intensity B/. The field has two sources, the magnets and the windings. 
The property of magnetic material that relates to how much field they can support is permeability  which in 
steel is high. Thus the field is concentrated (at high B) almost entirely in the teeth and only a little in the 

windows. (The windows field has leakage inductance in series with Rw as Lw in a more complete dynamic motor 

model.) 

The magnetic path is largely defined by geometric parameters of cross-sectional path area A and path length l, 
resulting in path volume V. A, l, and hence V are geometric constants. Energy W is the time integral of power; 

( )W P t dt V H dB=  =     

Thus energy density, 
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For linear magnetics,  is constant. Then substituting B =  H 
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The field energy of a motor—the magnetic energy W stored in its field—varies with B2, magnetic-path volume, 
and path permeability. Fig. 1 plots B(H) for a magnetic material that is not linear and is saturating; B is 
reaching some limiting value from saturation as field intensity H increases. Ideally, motor magnetic paths have 
a linear B(H) and by design only begin to saturate at their extreme of operation.  

The field energy density w is shown in Fig. 1 as the area under the curve along the B-axis because in the 
integral for w, H is the integrand and B as incremental dB is the variable of integration. Thus, for H(B) to be 
integrated along the B-axis results in the area under the curve as shown in Fig. 1.   

 
Fig. 1. Graph of B(H) magnetics for a nonlinear material. The curvature shows magnetic 

saturation (decreasing ). Whether B(H) is linear or not, the area depicted by w is the field 

energy density in the material. 

Energy Derivation Of me 

Mechanical energy is  

 = dTW  

 

From the previous section, we also know 




=
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Then, with fixed geometry, volume V is constant and torque is 
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This equation provides geometric insight for Fig. 2. A magnet N-S edge is sweeping over a one-tooth winding 

with a magnetic path subtending an arc of t of the tooth. The rotor is moving CCW (right to left) at speed me. 

Stator current is in the winding is producing stator magnetic field density Bs with polarity (direction of Bs) as 

shown. The air gap between magnets and tooth has length g, the width of the gap. 

 
Fig. 2. A N-S magnet edge sweeps over a one-tooth winding subtending arc t. Winding current is 

produces field Bs that adds vectorially to the magnet Br, and being in alignment with them in the 
tooth, adds algebraically. 

The air gap volume of B is 

V = (r )gl 

Bs subtracts from magnet flux Br under N and adds under S. The N-S magnet boundary is at t –  as  

proceeds CCW. Torque produced by energy in the gap is, from the previous torque equation, 

21
( ( ) )

2

d
T B r g l

d


 
=     


 

where r, g, and l are all fixed geometric dimensions. Then B2 underneath the N and S magnets is different, with 

 at the N-S edge; 
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t within the derivative is fixed and its derivative is zero, leaving 
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2 2( ) ( ) 4r s r s r sB B B B B B+ − − =    

The gap area subtended by the tooth is At. Then applying Magnetic Ohm’s Law, stator winding field flux is 
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Substituting for Bs into T, and for p pole-pairs,  

( 2 )r s me sT p N r l B i i=       = 
 

This is the same result for torque-current conversion as that of the Lorentz-force derivation. Within me, 2∙r∙l = 

A, the magnetic path area, and Br∙A = r, the field flux, and when referred to the electrical side by the total 

turns for all the pole-pairs of p∙N is the circuit flux  on the electrical side of the motor model. It is denoted as 

me because it refers the mechanical side of the motor to the electrical side as winding-referred circuit flux.  

Electromagnetic Energy Conversion 

Now that the energy and Lorentz-force derivations have produced the same me, the energy method is taken 

further. The thermodynamic energy polarity convention is W > 0 J  W into the motor. By conservation of 
energy, the energy in the magnetic field is the sum of energy into the motor from both electrical and 
mechanical ports; 

Wel + Wme = Wf   

where Wel is electrical energy in the windings, Wme is mechanical energy (including that of the reactive 

mechanical elements J and K) and Wf is the energy of the mediating magnetic field. For linear magnetics, motor 

magnetic field energy, 

2
2
1 )( sf iLW =   

where L( ) is the motor inductance for a given arc subtended by the magnetic field. 

Motor inductance is self-inductance: leakage L + mutual inductance Lsr that couples with rotor magnets. 

Magnets can be modeled as an equivalent constant rotor current ir through an equivalent rotor winding 

producing Br. Then magnetic field energy is 

2 21 1
2 2

( , , ) ( ) ( ) ( )f s r me ss me s sr me s r rr me rW i i L i L i i L i   =   +   +    

where me is the angle as measured in stationary coordinates attached to the motor stator. 

Wel in a linear motor—a motor with a linear (constant-) magnetic path—goes equally into Wf and Wme so that 

2 2( , , ) ( ) ( ) ( )
( )

2 2

f s r me s ss me sr me rr mer
me s r
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For a symmetric rotor and stator, Lss and Lrr are constant with me and thus independent of me. That leaves 

( ) ( )
( ) sr me sr me

me s r r s me s

me me

dL dL
T i i i i i

d d

 
 

 

 
=   =   =  

 
 

(Variable or switched reluctance (VR or SR) motors are based on torque production of varying inductance where 

one or both of the zero terms above are not zero. Step-motors usually have a small VR torque component of 

under 5%.) The el  me conversion parameter me relates to the mutual inductance between stator and rotor. 

Mutual inductance by definition is, in this case, Lsr = s/ir. Then me = T/is and substituting Lsr, 

s s s sr r
me r sr

me r me r me me me

d ddi did
i L

d i d i d d d

   


    

 
=  = −  = −  

 
 

where the mutual inductance Lsr is the stator flux s produced by the equivalent magnet current ir (that 

produces the same Br in an equivalent rotor winding). For the constant ir of the PM (but not VR) equivalence, 

then dir /dme = 0, and 

1s s
me

me me me me

d d vdt
v

d dt d




 


   
= =  =  =  

This is the v el  me conversion equation and is the same as that derived from the Lorentz-force derivation in 

part 3, bottom of page 2.  

Winding Inductance From me 

Use of the energy method makes it possible to relate winding inductance and torque. The field variables B and 
H relate directly and simply to energy and inductance relates simply to flux, which relates simply to B and 
circuit inductance. While the relationship between inductance and torque is not needed for PMS motor modeling, 

it will be useful later for understanding variable reluctance motors. 

Assume again a PM-equivalent rotor winding and constant-current Ir producing Br. Then define Lme such that 

me = Lme Ir = pN2rlBr 

In general, recalling that Magnetic Ohm’s Law is  = L∙(Ni) where L = field-referred inductance = ∙A/l, 

( )

( )r
r

A
N i

l
B N i

A A l



 

 
  

 = = =    

For l = gap width = g and i = Ir, then substituting for Br into me for p pole-pairs of N turns, 
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=         

 

  
=   
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where pN is the total number of turns per phase-winding, and Lme is average motor mutual field inductance 

between stator and rotor. Then the motor mutual circuit inductance is 

Lsr = (pN)2Lme   

Series winding inductance that can be added to the motor model is leakage inductance Lss. Lsr is in me of the 

induced-voltage v source because it couples between electrical and mechanical sides of the motor, much like 

the mutual inductance between windings of a transformer. The difference is that in a motor, the equivalent 

rotor “secondary winding” moves. The total inductance across the PMS winding terminals remains Lw = Lss + Lsr. 

Winding Configurations And Sequencing 

Having now developed both Lorentz-force and energy methods for deriving a motor model, we turn our 

attention to the electrical side and a detail that does not appear in the motor model as such. Some hints have 
been given previously that the phase-windings of a motor can be configured in different ways—that is, they can 
be interconnected in different configurations.  

Phase-windings can each be center-tapped to allow for unipolar-current drive that can create bipolar flux. Each 
side of the center-tap is an opposite-polarity winding that can be driven by a current controlled by a switch in 
series with the winding. Depending on which switch is closed, the flux produced is of either polarity.  

The circuit can produce bipolar fluxes with unipolar circuit currents. However, only half of the total winding is 

utilized and torque and energy density of the motor is halved by not driving both half-windings all of the time. 
Yet this scheme simplifies the drive electronics and can be feasible for smaller motors. 

Three-phase motors have three phase-windings, configured to minimize drive switching in two possible three-

terminal configurations, shown in Fig. 3. They are driven with bipolar currents and have dual configurations: Y 

(wye, star, T) and  (delta, ).  

Y has a central neutral node and the phase-windings are connected in series pairs. The  configuration has one 
phase-winding in parallel with two others in series. For either configuration, three terminals can be driven as 
two (open terminal in DCM, discontinuous conduction mode) or three (all phase-windings conducting in CCM, 

continuous conduction mode) concurrently. The different drive alternatives result in different induced-voltage 
waveforms 

 
Fig. 3. A three-phase motor has three-phase-windings that can be interconnected or configured 

as shown. Optionally, the common (neutral) node of the Y (wye) configuration can be brought out 
of the motor for access. 

Phase-windings are each modeled as an induced-voltage generator in series with winding resistance Rw. DCM 

drive is shown in Fig. 4, where X is the open phase-winding; current in it is discontinuous (0 A) as YZ is driven. 

The induced voltage across open-circuit YZ terminals (with vg disconnected) when the rotor is spun is the vector 

sum of B – C.  
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These vectors are the amplitude (magnitude) and phase of periodic waveforms, typically sine-waves, 
represented as rotating on the vector diagram in Fig. 5. Adding –B to A results in terminal pair XY voltage of 

AB = A – B, with magnitude of 3 A, lagging A by 30 el. 

 
Fig. 4. Circuit model of a Y-configured motor, with v voltage sources shown as vector phase-

winding voltages (to include their phase in the model) of A, B, and C. The terminals are labeled 
X, Y, and Z. The drive source vg is shown driving terminal pair YZ (vY – vZ) while terminal X is 

open—a DCM drive of the motor. 

A

30

C

Three-Phase Vector Diagram

B

A – B = AB

–B
 

Fig. 5. Vector diagram showing phase explicitly as angles between phase-winding voltages. 
Vector lengths represent voltage magnitudes; they are equal for an electrically symmetric motor. 

In Fig. 4, current from Y to Z (through B and C phase-windings) is 

( )

2 2

g B C g B C

g

w w

v v v v v v
i

R R

− − − +
= =

 
 

At neutral node N, 

N g B g w

N C g w

v v v i R

v v i R

= − − 


= − + 
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From the symmetry of the phase-windings, 

( )A B Cv v v= − +  

Then adding the vN equations, the voltage at the neutral node is 

1
2

( )N A gv v v=  +  

where vA is the A phase-winding voltage and vg is the drive voltage applied across terminal pair YZ. The open-

terminal voltage of phase-winding A is 

3 1
2 2X A N A gv v v v v= + =  +   

If node N is available, then vA = vX  – vN. If not, vN can be synthesized by connecting equal-value resistors to 

the three terminals. The resistors form equal  ⅓ voltage dividers and the voltage at the common node of 

resistors is 

'
3

X Y Z
N

v v v
v

+ +
=  

Drive to the phase-windings is sequenced by switching (commutating) connections to the three pairs of 

terminals in phase intervals or steps. For the drive step shown above, vY = vg and vZ = 0 V. Thus 

31 1 1 1
' 3 3 2 2 2

( 0V) [( ) ] ( )N X g A g g A gv v v v v v v v=  + + =   +  + =  +  

Substituting for vX, 

3 1 1
' 2 2 2

( ) ( ( ))X N A g A g Av v v v v v v− =  +  −  + =  

Voltage across the open phase-winding terminal of X is that of its source vA and hence vN ’ = vN. Therefore 

having N accessible via a fourth wire is not essential because it can be synthesized with three equal-value 

resistors. 

Phase-winding voltages are represented as vectors as indicated in bold on Fig. 4 and shown in Fig. 5. The CCW 

phase sequence is ACB because the vectors rotate with  and in sequence cross 0 (where A is in Fig. 5) in that 
order. The vectors are rotating against the fixed stator coordinate frame. For CW rotation, it is ABC; any 
sequence permutation has opposite direction of rotation. Three terminals, taken in pairs result in six 
permutations:  

AB, AC, BC, BA, CA, CB 

The phase diagram of Fig. 6 shows the phase-winding voltages, A, B, and C as vectors at their 0 positions 
relative to A, with positive zero-crossings when rotating CCW.  
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A

ZY

C

Y-configured vector diagram

B

AB

AC

BC

BA

CA

CB

ZY

XYXZ
XZ

YZ

YZ

YX

YX

ZX

 

Fig. 6. Complete set of vectors for Y-configured three-phase motor, showing intervals (steps) 
between vectors of terminal-pair zero-crossing induced voltages that can be detected for phase 

control (step sequencing). 

Drive is applied for a duration of 30 el around each of the six phase-winding induced-voltage peaks, from 

60 to 120 of electrical phase, centered at 90 el. Each of the six steps is driven for an interval of 60 el. In 

Fig. 6, the XY drive step occurs from 30 to 90 relative to A.  

The next drive-step, XZ, begins at 90, coinciding with 0 of BC. Thus, a comparator sensing the positive 
zero-crossing (+zc) of BC can advance the switch sequencing to drive XZ = AC; AC had a +zc (with CCW 

rotation) 90 before the center of the XZ interval where vAC peaks at the +zc of B, midway through the XZ 

drive step. Understanding phase control begins with an understanding of Fig. 6. 

Six-step phase control is a simple, low-cost scheme that uses comparators to detect the zero-crossings of 

the terminal-pair voltages. This scheme will be developed in more detail later. Continuous phase control is 
better but involves more electronics. Six-step control for many low-cost applications is an optimal design 
alternative. 

In the next part, we’ll develop a fuller understanding of three-phase motor winding phase, what voltages 

occur across pairs of terminals in the Y and  configurations, how to relate them, and how to drive the 
windings. 
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For further reading on motors and motor drives, see “A Practical Primer On Motor Drives”. 
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