

3300-V And 2300-V SiC MOSFETs Are Sampling In Module, Discrete And KGD Form

[Navitas Semiconductor](#) has announced the sample availability of its new 3300-V and 2300-V ultra-high voltage (UHV) products in power module, discrete and known good die (KGD) formats (see the figure). These 3300-V and 2300-V UHV devices are based on Navitas' fourth-generation GeneSiC platform which uses a TAP architecture to implement a multi-step e-field management profile that significantly reduces voltage stress and improves voltage blocking capabilities compared with trench and traditional-planar SiC MOSFETs.

This TAP architecture is therefore able to provide increased long-term reliability and avalanche robustness, says the vendor. Navitas' TAP technology also features an optimal source contact for superior cell-pitch density and enhanced current-spreading, which results in improved switching figures of merit and lower on-resistance at hot temperatures.

With this announcement, Navitas is expanding the 3300-V and 2300-V UHV SiC product portfolio in flexible packaging formats to meet diverse application requirements. For high-power density and high-reliability systems, these products are integrated into an advanced SiCPAK G+ power module package, offered in half-bridge and full-bridge circuit configurations.

The SiCPAK G+ power modules feature a unique epoxy-resin potting technology, which has been proven to deliver a >60% improvement in power cycling lifetime and a >10x improvement in thermal shock reliability over similar silicone-gel-potted power module technology.

Key features of the SiCPAK G+ power modules also include an AlN DBC substrate for superior heat dissipation and new high-current press-fit pins that double the current-carrying capability per pin. Discrete SiC MOSFETs are available in the industry-standard TO-247 and TO-263-7 packages.

Navitas has created what's described as an industry-first reliability qualification benchmark it dubs "AEC-Plus," indicating SiC products are qualified above and beyond the existing AEC-Q101 and JEDEC product qualification standards. According to the vendor, this benchmark reflects Navitas' deep understanding of system-level lifetime requirements, and a strong commitment to enabling rigorously designed and validated products for demanding mission profiles in grid and energy infrastructure applications.

The AEC-Plus grade qualification standards extend further into rigorous multi-lot testing and qualification. Key additions to the existing AEC-Q101 requirements include:

- Dynamic reverse bias (DRB) and dynamic gate switching (DGS) to represent stringent fast switching application mission-profiles
- Over 3x longer duration for static high-temperature, high-voltage tests (HTRB, HTGB, HTGB-R)
- HV-THB qualification for power modules and HV-H3TRB qualification for discrete and KGD products
- Longer power cycling and temperature cycling

By offering its latest-generation 3300-V and 2300-V SiC MOSFETs as KGD products, Navitas gives system manufacturers greater flexibility in building custom SiC power modules. To deliver the highest quality for bare die products and SiCPAK G+ power module family, Navitas devices pass through an advanced production screening process.

This process includes comprehensive room and hot temperature testing on singulated die (post-dicing) and a six-side optical inspection. This rigorous KGD screening protocol ensures that only thoroughly tested die are used, improving manufacturing quality and increasing the final module's performance and reliability for critical ultra-high voltage applications.

"Navitas' new 3300-V and 2300-V SiC product portfolio allows our customers to push the boundaries of efficiency and reliability in solid-state transformers for AI data centers, as well as utility-scale battery energy storage and renewable energy to define a new standard for such mission-critical system applications," said Paul Wheeler, VP & GM of SiC BU.

Wheeler added, "This line of reliable, high performance ultra-high voltage power semiconductors is expected to be a significant step in our roadmap to 10-kV SiC solutions. By combining our proprietary Trench-Assisted Planar SiC MOSFET technology with innovative power packages, we are able to extend reliability qualification and support more stringent production screening, to deliver industry-leading performance and robustness."

A [white paper](#) on the Trench-Assisted Planar technology is available for free download from the Navitas site. For further product information, see the [SiCPAK Power Modules](#), [SiC MOSFET Known Good Die \(KGD\)](#), and [SiC MOSFET Discrete](#) pages. To request samples, contact a Navitas [sales representative](#).

Figure. Navitas is sampling 3300-V and 2300-V SiC MOSFETs based on its latest GeneSiC Trench-Assisted Planar technology and packaging innovations to augment efficiency and lifetime for AI data center, grid and energy infrastructure and industrial electrification including energy storage, renewable, and megawatt-scale fast-charging applications.